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1. Wavelets: the basic idea
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1 Wavelets: the basic idea

The basic idea is to start with an appropriate basic function h(t) (the father wavelet), which might
look like this:
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Then form all possible translations by integers and all possible stretchings by powers of 2 of the
father wavelet:

hnik(t) = 22 h(2"t — k).
Above, 27 is just a normalization constant. To illustrate this construction, below we display h(2t)
and h(4t — 3):
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It turns out that if & is chosen properly, then h,x(t) are orthogonal:

<hnk7 hn’k") = /hnk(t)hn’k’ (t)dt =0

unless n =n' and k = k’.

Furthermore, hy; form a complete set for a wide class of functions (details later). Therefore every
function of interest to us can be expected as a linear combination of these basis functions:

FO) = cnrhnk(t).
n,k

How do we find the coefficients c¢,;? By completeness:

f(t) = Z C'nkhnk(t)

n,k

for some c,;. To find the coefficients, use the orthonormality of A, (t):

<f7 hn’k’> = Z Cnk <hnk7 hn’k’> = Cp/k!
n,k

which implies that
ek = (f o) = / FOhop(t)dt.

This is just like in the case of Fourier series.

There are major advantages compared to Fourier series. For high frequencies (n large), the func-
tions hyi(t) have good localization (they get thinner as n — oc0). The location of high frequency
components can be seen from wavelet analysis, but not from Fourier series.

Next we consider the simples possible wavelet construction — Haar wavelets.



2 Haar wavelets

2.1 The ‘pixel’ approximation spaces

Suppose we have a pizel function

1, if 0<t<1
t) =
¢(t) {0, otherwise.

We wish to build all other functions out of ¢(¢) and all its integer translates ¢(t — k), k € Z:
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Note that any function that is constant on integers can be written as a linear combination of
¢(t — k). For example, if f(t) look like this:



it can be written as follows:
ft) =20(t) +30(t — 1) — 2¢(t — 2) + 4o(t — 3).

Let Vy denote the set of all squared integrable functions that are constant on integer intervals.
Every element of g € Vj can be written as a linear combination of integer translates of the pixel ¢:

g(t) = 3" arolt — k).
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The elements of V4 looks like this:

Given a function f(t) (that is not constant on integers) we can approximate it by a linear combi-
nation of ¢(t — k), k € Z, i.e., by an element of Vj:
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To get better approximation shrink the basic function:
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Figure 1: ¢(t), ¢(2t), (2°1)

In details, ¢(2t) looks like this:



and ¢(2t — 1) looks like this

To see this note: 2tzlifft:%and2t—1zlifft:1.

The narrower functions ¢(2t + k), k € Z, give a better approximation to f(¢):

Let V1 denote the set of all square integrable functions that are constant on all half-integers. Every



element of g € V; can be written as a linear combination of integer translates of the pixel ¢(2t):

g(t) = ard(2t — k).
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We can continue in the analogous fashion. The elements of V5 look like this:




In general, let V; denote the set of all square integrable functions that are constant on 27 J-length
intervals. Every element of g € V; can be written as a linear combination of integer translates of
the pixel ¢(27¢):

g(t) = > ard(2t — k).
k

2.2 The multi-scale spaces

The pixel function ¢(-) generates the approximation space we need. However its scaled versions
and translates are not orthonormal to each other. Hence, we can use each space V; separately, but
we cannot use ...V_1,Vp, V1, Vo, ... together at once. We do not have a multiscale space. We fix
this problem next. Define the father function:

1, if 0<t<3
P(t) =14 -1, if $<t<1
0, otherwise.
This function looks like this:
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It is important not to confuse 1 (-) and ¢(-)!

From the father function we generate the family of Haar wavelets by integer translation, o5 =

P(t —5):
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and scaling, 137 = 2%111(2325 -17):

In general, _
ik = 250(2t — k), j €L,k € L.

It is not difficult to see that Haar wavelets are orthogonal across scales and within the same scale:
“+oo

(Y, Vi) = Vjx(t) Y (t)dt =0
if j # j/ or k # k. Indeed, If j = j' and k # k', then (i, ;i) = 0 because 1;x(t) = 0 for those
¢ for which ;i (t) # 0 and vice versa. If j # j/ then (Vjk, Yy ) = [ ¥j(t)¥ju (t)dt = 0, as can
be seen from the figure:
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Can every function be represented as a combination of Haar wavelets?

Recall that V; is the space of square integrable functions that are constant on dyadic intervals of
length 277. The elements of this space can be written as > okez apd(2’t — k). If j is negative, the
intervals are of length greater than 1. Concretely, V_; contains functions constant on intervals of
length 2; V_s contains functions constant on intervals of length 4, etc.

We will next list the properties of {V;} :

1. If a function is piecewise constant on integers then it is piecewise constant on half integers.
Therefore, ...V_o CV_1 C Vo C Vi3 C Vo C V...
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2. It can be shown that N, V,, = {0} (the constant zero function).

3. Every function can be approximated by a staircase function arbitrarily well if the side of the
stairs is small enough. Therefore, U,V,, is dense in the space of square integrable functions.

4. Take a function that is constant on all intervals of length 27". Shrink it by a factor of 2. The
result is a function that is constant on intervals of length 27"~1. Therefore, if f(t) € V,,, then

f(Qt) € Vn+1 .

5. Translating a function by an integer does not change the fact that it is constant on integer
intervals. Therefore, if f(t) € Vp then f(t — k) € V.

6. The family of functions:
¢0k:¢(t_k)7 keZ

forms an orthogonal basis for V. The function ¢ is called the scaling function.

Definition 1. A sequence of spaces {V}};cz together with the scaling function ¢ that generates Vj
so that (1)-(6) are satisfied is called the multiresolution analysis.

Definition 2. Assume M; and My are orthogonal subspaces, i.e., w1 L ws for all wy € My and
wo € Ms. The subspace V' is the orthogonal direct sum of My and Ms, denoted as V = My & Mo,
if every v € V can be written uniquely as

V= wy + wy
with wy € My and wy € Ms.
Now consider again our hierarchy of subspaces

Lo VoeocVa VoV Vo Vs L.
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Since Vy C V4, there is a subspace Wy such that V& Wy = V4, we denote this subspace Wy = V16V5.
Similarly define W7 = V5 © V; and, in general, W;_; = V; © V;_1.

We have:

Vs=Vo o W
=VioW e W
=Ve Wy W1 & Wy
=VaeW_ieWyae W, e W,

and therefore for vz € Va:

V3 = VU2 + w2
= U1 + w1 + w2
= Vo + wo + w1 + w2
=v_1t+tw-1+wy+wi + wy

with v; € V; and w; € W;.
In conclusion, the relationship between {V;} and {W;} looks like this:

How can we characterize the W) spaces?

Claim 3. Wy is the set of functions that are constant on half integers and take equal and opposite
values on half of each integer interval. For example, here is an element from Wy:
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Proof. Let A be the the set of functions that are constant on half integers and take equal and
opposite values on half of each integer interval. We need to show that Wy = A. First, show that
Vb and A are orthogonal. Second, show that V) & A = V;. Then it will follow that:

A=VieVy=W,.

e First, take f € 1j and g € A, these functions look like this:

f(t)

4 g(1)
_IL ‘F =ills
e Lﬁ ~

Thus it can be directly verified that (f,g) = f_Jr;o f(t)g(t)dt = 0 because f(t)g(t) takes on
equal and opposite values on each half of every integer interval, and so integrates to 0 on each

integer interval.
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e Second, for every f € Vj there exist fo € V) and gg € A such that f = fy + go. Indeed, take
f € Vq. It is constant on the half integer intervals:
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Define fy to be the function that is constant on each integer interval and whose values is the
average of two values of f on that interval:
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Then, fy is constant on integer intervals, and so fo € Vy. Now define go(t) = f(t) — fo(?).
Clearly go takes on equal and opposite values on each half of every integer interval, and so
go(z) € A.
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To summarize we have
f(z) = fo(x) + go(x)
where fo € Vy and g9 € A. Therefore, V1 =V d A = A = W) O

Similarly we can show that W; is the space of square integrable functions that take on equal and
opposite values on each half of the dyadic interval of length 277,

To summarize we designed the following structure:
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Every function with quantlzatlon
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can be decomposed into 8 functions in W3, plus 8 = 4 4+ 2 + 1 + 1 functions in the lower layers.
Typically the representation will be sparse. For example, consider the function we started with:
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The representation is sparse because most of the coefficients are zero at high level of details.
Concretely, consider ¢3; € W3. Note (f,13,) = 0 for all i # 3. Only (f,13;) # 0. Therefore, one
singularity in the function only affects a few selected coefficients, unlike in the Fourier transform
case.
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