MLISP: Machine Learning in Signal Processing

Lectures 15, 16, and 17

Prof. V. I. Morgenshtern

Scribe: M. Elminshawi

Agenda:

- 1. The basic theorem in compressed sensing
- 2. Optimality conditions
- 3. Generalizing the gradient
- 4. The dual certificate
- 5. Construction of the dual certificate

1 The basic theorem in compressed sensing

Theorem 1 (Main theorem). Let $\mathbf{x}_0 \in \mathbb{R}^n$ be an s-sparse vector. Let \mathbf{A} be an $m \times n$ random matrix with $A_{ij} \sim \mathcal{N}(0, \frac{1}{m}), m \geq 9s \log(n)$. Let $\mathbf{b} = \mathbf{A}\mathbf{x}_0$.

Then \mathbf{x}_0 is the unique solution of

$$\min_{\mathbf{x}} \quad \|\mathbf{x}\|_{1}$$
subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

with probability at least 1 - 3/n.

The meaning of this theorem: If the number of measurements m is slightly larger that the information content of the signal, s, then we can recover \mathbf{x}_0 exactly from $\mathbf{b} = \mathbf{A}\mathbf{x}_0$ via linear programming with overwhelmingly high probability.

2 Optimality conditions

Consider the optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x})
\text{subject to } \mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

Let \mathbf{x}_* denote the unique optimal solution of this optimization problem, i.e., the solution to (1). What are the conditions that \mathbf{x}_* should satisfy?

Note that

$$\{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} = \{\mathbf{x}_* + \mathbf{h} : \mathbf{h} \in \mathcal{N}(\mathbf{A})\}.$$

Therefore, \mathbf{x}_* solves (1) iff

$$f(\mathbf{x}_* + \mathbf{h}) \ge f(\mathbf{x}_*)$$
 for all $\mathbf{h} \in \mathcal{N}(\mathbf{A})$

where $\mathcal{N}(\cdot)$ denotes the null space.

Define the cone of descent directions of $f(\cdot)$ at \mathbf{x}_* :

$$\mathcal{D} = \{ \mathbf{d} : f(\mathbf{x}_* + \alpha \mathbf{d}) < f(\mathbf{x}_*) \text{ for some } \alpha > 0 \}.$$

For

$$f(\mathbf{x}) = f(x_1, x_2) = ||\mathbf{x}||_1 = |x_1| + |x_2|$$

this cone looks like this:

Since \mathbf{x}_* is the optimum of (1), we must have:

$$\mathcal{D} \cap \mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}. \tag{2}$$

Indeed, if (2) is not satisfied, take $\mathbf{d} \neq \mathbf{0} \in \mathcal{D} \cap \mathcal{N}(\mathbf{A})$ and note that $f(\mathbf{x}_* + \alpha \mathbf{d}) < f(\mathbf{x}_*)$ and $\mathbf{A}(\mathbf{x}_* + \alpha \mathbf{d}) = \mathbf{A}\mathbf{x}_* = \mathbf{b}$. Therefore $\mathbf{x}_* + \alpha \mathbf{d}$ satisfies the constraints and makes the objective smaller. Contradiction with the assumption that \mathbf{x}_* is optimum of (1).

How can we guarantee that (2) is satisfied? To express condition (2) in a more convenient form, we need to study subgradients.

3 Generalizing the gradient

Note that the ℓ 1-norm, $f(\mathbf{x}) = ||\mathbf{x}||_1$ is not differentiable everywhere: there is no gradient at the intersections with the axes.

For example, in 1D f(x) is not differentiable for x=0:

However $f(\mathbf{x}) = \|\mathbf{x}\|_1$ is convex, which allows us to define the generalized version of the gradient.

The subgradient: Vector \mathbf{g} is a subgradient of $f(\cdot)$ at \mathbf{x} if:

$$f(\mathbf{z}) \ge f(\mathbf{x}) + \mathbf{g}^{\mathsf{T}}(\mathbf{z} - \mathbf{x}).$$

For example if the function is smooth, the subgradient is unique and it is equal to the gradient:

If the function has a kink, there are infinitely many subradients:

The subdifferential: The set of subgradients of $f(\cdot)$ at \mathbf{x} is called the *subdifferential*:

$$\partial f(\mathbf{x}) = \{\mathbf{g} : \mathbf{g} \text{ is subgradients of } f \text{ at } \mathbf{x}\}.$$

If f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}.$

For example:

$$\partial |x| = \begin{cases} \{1\}, & x > 0 \\ \{-1\}, & x < 0 \\ [-1, 1], & x = 0 \end{cases}$$

Properties of the subdifferential:

- 1. $\partial \{af(\mathbf{x})\} = a\partial f(\mathbf{x})$
- 2. $\partial \left(\sum_{i=1}^{T} f_i(\mathbf{x})\right) = \sum_{i=1}^{T} \partial f_i(\mathbf{x})$ where \sum is the Minkowski sum of sets. For example, if $\mathcal{S}_1 = \{a, b\}$ and $\mathcal{S}_2 = \{c, d, e\}$, then

$$S_1 + S_2 = \{a + c, a + d, a + e, b + c, b + d, b + e\}.$$

3. If

$$f(\mathbf{x}) = \max_{i \in I} \left(\mathbf{a}_i^\mathsf{T} \mathbf{x} + b_i \right)$$

then

$$\partial f(\mathbf{x}) = \operatorname{conv}\{\mathbf{a}_i : f(\mathbf{x}) = \mathbf{a}_i^\mathsf{T} \mathbf{x} + b_i\}$$

where $conv(\cdot)$ denotes the convex hull.

For example if $A = \{a, b\}$,

$$conv(\mathcal{A}) = \{\theta \mathbf{a} + (1 - \theta)\mathbf{b} : 0 \le \theta \le 1\}.$$

To illustrate this property, let $f(x) = |x| = \max(x, -x)$. Consider x = 0, then f(x) = x and f(x) = -x. Therefore, $\partial f(x) = \text{conv}\{+1, -1\} = [-1, 1]$.

These 3 rules allow us to calculate most subdifferentials. Let's calculate the subdifferential of the ℓ 1-norm.

Assume that

$$\begin{cases} x_i \neq 0, & i \in \mathcal{T} \\ x_i = 0, & i \in \mathcal{T}^{\mathsf{c}}. \end{cases}$$

where here and below \mathcal{T}^{c} denotes the complement of \mathcal{T} . Then $\mathbf{v} \in \partial \|\mathbf{x}\|_{1}$ iff

$$\begin{cases} v_i = \operatorname{sign}(x_i), & i \in \mathcal{T} \\ v_i \in [-1, 1], & i \in \mathcal{T}^{\mathsf{c}}. \end{cases}$$
 (3)

This can be seen as follows:

$$\|\mathbf{x}\|_1 = \sum_i \underbrace{|x_i|}_{f_i(\mathbf{x})}.$$

Therefore, when $x_i = 0$:

$$f_i(\mathbf{x}) = \max([0 \dots 0 \ 1 \ 0 \dots 0]\mathbf{x}, [0 \dots 0 \ -1 \ 0 \dots 0]\mathbf{x})$$

and

$$\partial f_i(\mathbf{x}) = \text{conv}\{[0 \dots 0 \ 1 \ 0 \dots 0], [0 \dots 0 \ -1 \ 0 \dots 0]\}.$$

From this (3) follows via property 2 of the subdifferential.

4 The dual certificate

Lemma 2. Assume $f(\cdot)$ is convex. Then, \mathbf{x} minimizes $f(\cdot)$ iff $\mathbf{0} \in \partial f(\mathbf{x})$.

Proof. Let's prove the lemma in one direction.

Take any other **z**, then by definition of subdifferential,

$$f(\mathbf{z}) \ge f(\mathbf{x}) + \mathbf{g}^{\mathsf{T}}(\mathbf{z} - \mathbf{x}) \text{ for every } \mathbf{g} \in \partial f(\mathbf{x}).$$

Since $\mathbf{0} \in \partial f(\mathbf{x})$ is a subgradient, the inequality is true for $\mathbf{g} = \mathbf{0}$. Hence, $f(\mathbf{z}) \geq f(\mathbf{x})$ for all \mathbf{z} .

Lemma 3. Assume $f(\cdot)$ is convex. Then, \mathbf{x} minimizes $f(\cdot)$ over the affine set $\{\mathbf{z} : \mathbf{A}\mathbf{z} = \mathbf{b}\}$ iff there exists λ such that $\mathbf{A}^{\mathsf{T}}\lambda \in \partial f(\mathbf{x})$ and $\mathbf{A}\mathbf{x} = \mathbf{b}$. The vector λ is called the dual certificate.

Proof. Let's proof the lemma in one direction.

Every element from the affine set $\{z : Az = b\}$ can be written as z = x + h with $h \in \mathcal{N}(A)$.

Since $\mathbf{A}^{\mathsf{T}} \lambda \in \partial f(\mathbf{x})$, we have

$$f(\mathbf{x} + \mathbf{h}) \ge f(\mathbf{x}) + (\mathbf{A}^{\mathsf{T}} \lambda)^{\mathsf{T}} \mathbf{h}$$
$$= f(\mathbf{x}) + \lambda^{\mathsf{T}} \underbrace{\mathbf{A} \mathbf{h}}_{\mathbf{0}}$$
$$= f(\mathbf{x}).$$

Therefore, **x** minimizes $f(\cdot)$ over the affine set $\{\mathbf{z} : \mathbf{Az} = \mathbf{b}\}$, as required.

In the figure below we take $\mathbf{A} = [a_1 \ a_2]$ so that we have one equation

$$\begin{bmatrix} a_1 \ a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b.$$

You can see the dual certificate in greed (the range $\mathcal{R}(\mathbf{A}^T)$ is orthogonal to $\mathcal{N}(\mathbf{A})$):

so that \mathbf{x} is the optimal point. Here it is clear that dual certificated does not exist, because $\mathbf{A}^{\mathsf{T}}\lambda$ does not belong to $\partial \|\mathbf{x}\|_1$ for any λ :

so that \mathbf{x} is not the optimal point.

Let's return to the proof of Theorem 1: the measurements are given by $\mathbf{b} = \mathbf{A}\mathbf{x}_0$, where \mathbf{x}_0 is the true signal we need to reconstruct. Our strategy in proving the main theorem is to explicitly construct the dual certificate λ such that $\mathbf{A}^{\mathsf{T}}\lambda = \mathbf{v} \in \partial \|\mathbf{x}_0\|_1$, which, according to (3), is equivalent to

$$v_i = \begin{cases} sign([\mathbf{x}_0]_i), & [\mathbf{x}_0]_i \neq 0 \\ (-1, 1), & [\mathbf{x}_0]_i = 0. \end{cases}$$

Let's make the notation more compact. Let \mathcal{T} denote the support of \mathbf{x}_0 :

$$\mathcal{T} = \{i : [\mathbf{x}_0]_i \neq 0\}.$$

Let $\mathbf{e} \in \mathbb{R}^s$ be the vector of signs of \mathbf{x}_0 on its support \mathcal{T} : $\mathbf{e} = [\operatorname{sign}(\mathbf{x}_0)]_{\mathcal{T}}$. With this notation our task is to find λ such that:

$$[\mathbf{A}^\mathsf{T}\lambda]_\mathcal{T} = \mathbf{e}$$
 (eq)

$$\|[\mathbf{A}^\mathsf{T}\boldsymbol{\lambda}]_{\mathcal{T}^c}\|_{\infty} < 1.$$
 (bnd)

Above, the notation $[\cdots]_{\mathcal{T}}$ means the restriction of the components of the vector to the index set \mathcal{T} .

5 Construction of the dual certificate

We will take λ to be a specific solution of (eq). Then we will prove that this λ satisfies (bnd).

Without loss of generality we can permute the columns of A in such a way that the coordinates corresponding to \mathcal{T} are the first coordinates of A. Then we can partition A as follows:

$$\mathbf{A} = [\mathbf{A}_{\mathcal{T}} | \mathbf{A}_{\mathcal{T}^c}].$$

Note that the equation

$$[\mathbf{A}^\mathsf{T} \boldsymbol{\lambda}]_\mathcal{T} = \mathbf{e}$$

has infinitely many solution because $\mathbf{A}_{\mathcal{T}}^{\mathsf{T}}$ is an $s \times m$ matrix and m > s.

Among infinitely many solutions of (eq) we will choose the one with the smallest ℓ 2-norm:

$$\min_{\lambda} \quad \|\lambda\|_{2}
\text{subject to} \quad \mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \lambda = \mathbf{e} \tag{4}$$

which gives us the closed form solution as follows: $\lambda = \mathbf{A}_{\mathcal{T}}(\mathbf{A}_{\mathcal{T}}^{\mathsf{T}}\mathbf{A}_{\mathcal{T}})^{-1}\mathbf{e}$.

To see that this λ is indeed the solution of (4), note that every vector that satisfies the constraints in (4) can be written as $\tilde{\lambda} = \lambda + \mathbf{n}$ with $\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{n} = \mathbf{0}$. Therefore, since

$$\langle \mathbf{n}, \boldsymbol{\lambda} \rangle = \left\langle \mathbf{n}, \mathbf{A}_{\mathcal{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e} \right\rangle = \left\langle \mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{n}, (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e} \right\rangle = 0,$$

we have, for $\mathbf{n} \neq \mathbf{0}$,

$$\begin{split} \left\| \tilde{\lambda} \right\|_2^2 &= \| \boldsymbol{\lambda} + \mathbf{n} \|_2^2 \\ &= \| \boldsymbol{\lambda} \|_2^2 + \| \mathbf{n} \|_2^2 + 2 \underbrace{\left| \langle \mathbf{n}, \boldsymbol{\lambda} \rangle \right|}_0 \\ &= \| \boldsymbol{\lambda} \|_2^2 + \| \mathbf{n} \|_2^2 \\ &> \| \boldsymbol{\lambda} \|_2^2 \,. \end{split}$$

We conclude that $\tilde{\lambda}$ is not the optimal point unless $\mathbf{n} = \mathbf{0}$. Observe that it is not obvious that this particular solution of (eq) has a chance to satisfy (bnd). Intuitively, we minimize some norm of λ ,

to make the vector shorter, so there is more chance for $\|[\mathbf{A}^\mathsf{T}\lambda]_{\mathcal{T}^c}\|_{\infty} < 1$ to be true. Minimizing the $\ell 2$ -norm specifically is convenient because there is the closed form solution for it, as specified above. In general, the dual certificate is not unique, and other constructions also exist.

Define $\mathbf{z} = \mathbf{A}_{\mathcal{T}^c}^\mathsf{T} \lambda = \mathbf{A}_{\mathcal{T}^c}^\mathsf{T} \mathbf{A}_{\mathcal{T}} (\mathbf{A}_{\mathcal{T}}^\mathsf{T} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e}$. To prove (bnd), it remains to show that: $|z_i| < 1$ for all i with high probability, where the probability is over the random choice of \mathbf{A} .

First note that $\mathbf{A}_{\mathcal{T}^c}$ is independent of $\mathbf{A}_{\mathcal{T}}(\mathbf{A}_{\mathcal{T}}^\mathsf{T}\mathbf{A}_{\mathcal{T}})^{-1}\mathbf{e}$. The vector \mathbf{z} has a complicated distribution, but we can control it by controlling $\mathbf{A}_{\mathcal{T}^c}$ and $\mathbf{A}_{\mathcal{T}}(\mathbf{A}_{\mathcal{T}}^\mathsf{T}\mathbf{A}_{\mathcal{T}})^{-1}\mathbf{e}$ separately.

Let's calculate the ℓ 2-norm of λ :

$$\begin{aligned} \|\boldsymbol{\lambda}\|_{2}^{2} &= \left\| \mathbf{A}_{\mathcal{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e} \right\|_{2}^{2} \\ &= \mathbf{e}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-\mathsf{T}} \mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e} \\ &= \mathbf{e}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e}. \end{aligned}$$

In the following lemmas we will show that $\|\lambda\|_2^2$ is small with high probability.

Claim 4. $\|\lambda\|_2^2 = \mathbf{e}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e}$ has the same distribution as $s[(\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1}]_{11}$.

Proof. The claim follows from the fact that the Gaussian distribution is symmetric w.r.t. change of basis as follows. Recall that $\mathbf{e} \in \mathbb{R}^s$ is a vector of +1's and -1's. Therefore, $\|\mathbf{e}\|_2 = \sqrt{s}$. Let's change basis: $\mathbf{e} = \mathbf{U}\mathbf{e}_1$ where $\mathbf{e}_1 = [\sqrt{s}, 0, \dots, 0]^\mathsf{T}$ and \mathbf{U} is a unitary matrix. Therefore,

$$\begin{split} \mathbf{e}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e} &= \mathbf{e}_{1}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{U} \mathbf{e}_{1} \\ &= \mathbf{e}_{1}^{\mathsf{T}} (\mathbf{U} \mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}} \mathbf{U}^{\mathsf{T}})^{-1} \mathbf{e}_{1} \\ &\sim \mathbf{e}_{1}^{\mathsf{T}} (\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1} \mathbf{e}_{1} \\ &= s [(\mathbf{A}_{\mathcal{T}}^{\mathsf{T}} \mathbf{A}_{\mathcal{T}})^{-1}]_{11} \end{split}$$

where we have used that $\mathbf{A}_{\mathcal{T}}\mathbf{U}^{\mathsf{T}}$ and $\mathbf{A}_{\mathcal{T}}$ have the same distribution because $\mathbf{A}_{\mathcal{T}}$ is Gaussian and \mathbf{U} is unitary; the notation \sim means that the two random variables have the same distribution; and the last step follows from the definition of \mathbf{e}_1 .

Let us now recall the definition of χ^2 random variable.

Definition 5. Let z_1, \ldots, z_k be i.i.d. $\mathcal{N}(0,1)$ random variables. Then $q = z_1^2 + \cdots + z_k^2$ has χ^2 distribution with k degrees of freedom.

Claim 6. $m/[(\mathbf{A}_{\mathcal{T}}^{\mathsf{T}}\mathbf{A}_{\mathcal{T}})^{-1}]_{11}$ has χ^2 distribution with m-s+1 degrees of freedom.

Proof. To shorten notation let $\mathbf{B} = \mathbf{A}_{\mathcal{T}}$. Let \mathbf{b} denote the first column of \mathbf{B} and \mathbf{C} be the matrix that contains all columns of \mathbf{B} , except for the first one: $\mathbf{B} = [\mathbf{b} \ \mathbf{C}]$. Then,

$$\mathbf{B}^\mathsf{T}\mathbf{B} = \begin{bmatrix} \mathbf{b}^\mathsf{T}\mathbf{b} & \mathbf{b}^\mathsf{T}\mathbf{C} \\ \mathbf{C}^\mathsf{T}\mathbf{b} & \mathbf{C}^\mathsf{T}\mathbf{C} \end{bmatrix}.$$

Using the Matrix Inversion Lemma, it follows:

$$[(\mathbf{B}^\mathsf{T}\mathbf{B})^{-1}]_{11} = 1/k$$

where

$$k = \mathbf{b}^\mathsf{T} \mathbf{b} - \mathbf{b}^\mathsf{T} \mathbf{C} (\mathbf{C}^\mathsf{T} \mathbf{C})^{-1} \mathbf{C}^\mathsf{T} \mathbf{b}.$$

Note that

$$\mathbf{p} = \mathbf{C}(\mathbf{C}^\mathsf{T}\mathbf{C})^{-1}\mathbf{C}^\mathsf{T}\mathbf{b}$$

is the projection of the vector $\mathbf{b} \in \mathbb{R}^m$ onto the column space of \mathbf{C} . Using that $\langle \mathbf{b} - \mathbf{p}, \mathbf{p} \rangle = 0$, we conclude that

$$k = \mathbf{b}^\mathsf{T} \mathbf{b} - \mathbf{b}^\mathsf{T} \mathbf{p} = \|\mathbf{b} - \mathbf{p}\|_2^2.$$

Therefore, k is the squared distance between a Gaussian vector with zero mean and 1/m variance and an s-1 dimensional subspace. Therefore, $mk = m/[(\mathbf{A}_{\mathcal{T}}^{\mathsf{T}}\mathbf{A}_{\mathcal{T}})^{-1}]_{11}$ has χ^2 distribution with m-s+1 degrees of freedom.

From Claims 4 and 6 we conclude that $ms/\|\lambda\|_2^2$ has χ^2 distribution with m-s+1 degrees of freedom.

Lemma 7. Let q be a χ^2 distributed random variable with k degrees of freedom. Then, the following large deviation bound holds:

$$\mathbb{P}[k-q>t] \le \exp\left[-\frac{t^2}{4k}\right] \tag{5}$$

for all t > 0.

The tail bound is illustrated in the plot below:

In your homework you will use the important Chernoff bound technique and derive a similar but somewhat weaker bound. If you are interested in the proof of the bound in Lemma 7, see [B. Laurent and P. Massart, "Adaptive estimation of a quadratic functional by model selection", 2000, p. 1325].

Now we are ready to show the following tail bound for $\|\lambda\|_2$:

Claim 8.

$$\mathbb{P}\left[\left\|\lambda\right\|_2 > \sqrt{\frac{ms}{m-s+1-t}}\right] \leq \exp\left[-\frac{t^2}{4(m-s+1)}\right].$$

Proof. Since $ms/\|\lambda\|_2^2$ is χ^2 distributed with m-s+1 degrees of freedom, it follows from Lemma 7 that

$$\mathbb{P}\left[m-s+1-\frac{ms}{\|\lambda\|_2^2}>t\right]\leq \exp\left[-\frac{t^2}{4(m-s+1)}\right].$$

Note that

$$\mathbb{P}\left[m-s+1-\frac{ms}{\left\|\lambda\right\|_{2}^{2}}>t\right]=\mathbb{P}\left[\left\|\lambda\right\|_{2}>\sqrt{\frac{ms}{m-s+1-t}}\right]$$

which concludes the proof.

Next, consider $\mathbf{A}_{\mathcal{T}^c}^{\mathsf{T}}\lambda$ for a fixed λ . This is a Gaussian random vector. Each component of this vector is $\mathcal{N}(0, \frac{1}{m} \|\lambda\|_2^2)$. Therefore, using the Chernoff tail bound¹ for Gaussian $Q(\cdot)$ function that you will derive in your homework, we conclude:

$$\mathbb{P}\left[|z_{i}| > 1 \middle| \|\lambda\|_{2} \leq \sqrt{\frac{ms}{m-s+1-t}}\right] \leq \mathbb{P}\left[|w| > 1 \middle| w \sim \mathcal{N}\left(0, \frac{s}{m-s+1-t}\right)\right] \\
= \mathbb{P}\left[|w| \sqrt{\frac{m-s+1-t}{s}} > \sqrt{\frac{m-s+1-t}{s}} \middle| w \sim \mathcal{N}\left(0, \frac{s}{m-s+1-t}\right)\right] \\
= \mathbb{P}\left[|w| > \sqrt{\frac{m-s+1-t}{s}} \middle| w \sim \mathcal{N}\left(0, 1\right)\right] \\
\leq 2 \exp\left[-\frac{m-s+1-t}{2s}\right].$$

Using the union bound and the fact that \mathcal{T}^{c} contains n-s elements we obtain:

$$\mathbb{P}\left[\left\|\left[\mathbf{A}^{\mathsf{T}}\boldsymbol{\lambda}\right]_{\mathcal{T}^{\mathsf{c}}}\right\|_{\infty} > 1\right] \leq 2(n-s)\exp\left[-\frac{m-s+1-t}{2s}\right] + \exp\left[-\frac{t^2}{4(m-s+1)}\right].$$

This is an upper bound on the probability of failure. We would like to choose t so that this probability is less than 1/n. First, let's find a condition on t so that the second term is less than 1/n:

$$\exp\left[-\frac{t^2}{4(m-s+1)}\right] \le \frac{1}{n}$$

$$\Leftrightarrow -\frac{t^2}{4(m-s+1)} \le -\log(n)$$

$$\Leftrightarrow \frac{t^2}{4(m-s+1)} \ge \log(n)$$

$$\Leftrightarrow t^2 \ge 4(m-s+1)\log(n)$$

so we can choose $t = 2\sqrt{(m-s+1)\log(n)}$ and plug this value into the first term. Now we want to find a value of m such that the first term is less than 2/n:

$$2(n-s)\exp\left[-\frac{m-s+1-2\sqrt{(m-s+1)\log(n)}}{2s}\right] \le \frac{2}{n}.$$
 (6)

 $^{^{1}}Q(v) < e^{-v^{2}/2}$

First show that

$$m - s + 1 - 2\sqrt{(m - s + 1)\log(n)} \ge \frac{1}{2}(m - s + 1)$$

$$\Leftrightarrow m - s + 1 \ge 4\sqrt{(m - s + 1)\log(n)}$$

$$\Leftrightarrow \sqrt{(m - s + 1)} \ge 4\sqrt{\log(n)}$$

$$\Leftrightarrow m - s + 1 \ge 16\log(n)$$

which is true because $s \ge 2$ and $m \ge 9s \log(n)$ by assumption:

$$m - s + 1 \ge 9s\log(n) - s \ge 8s\log(n) \ge 16\log(n).$$

Therefore, to prove (6) it remains to show

$$(n-s)\exp\left[-\frac{m-s+1}{4s}\right] \le \frac{1}{n}$$

$$\Leftarrow n\exp\left[-\frac{9s\log(n)-s}{4s}\right] \le \frac{1}{n}$$

$$\Leftarrow \exp\left[-\frac{8s\log(n)}{4s}\right] \le \frac{1}{n^2}$$

$$\Leftarrow \exp\left[-2\log(n)\right] = \frac{1}{n^2}.$$

This completes the proof of the main theorem.