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1 The basic theorem in compressed sensing

Theorem 1 (Main theorem). Let xo € R™ be an s-sparse vector. Let A be an m x n random
matriz with A;j ~ N(0, L), m > 9slog(n). Let b = Axq.

Then xq is the unique solution of
min Il

subject to Ax=Db
with probability at least 1 — 3/n.

The meaning of this theorem: If the number of measurements m is slightly larger that the
information content of the signal, s, then we can recover xg exactly from b = Ax( via linear
programming with overwhelmingly high probability.

2 Optimality conditions

Consider the optimization problem:
min f(x)
X
subject to Ax=Db

(1)

Let x, denote the unique optimal solution of this optimization problem, i.e., the solution to (1).
What are the conditions that x, should satisfy?



Note that
{x:Ax=b}={x.+h:heN(A)}.

Therefore, x, solves (1) iff

f(x«+h) > f(x,) for all h € N(A)
where N (-) denotes the null space.
Define the cone of descent directions of f(-) at x,:

D={d: f(x«+ ad) < f(x,) for some a > 0}.

For

f(x) = [z, 22) = [Ix]ly = |21] + |22
this cone looks like this:

\\ To

Xy
cone of descent \\
N

level sets of [ |y

Since x, is the optimum of (1), we must have:
DNN(A) ={0}. (2)

Indeed, if (2) is not satisfied, take d # 0 € D NN (A) and note that f(x, + ad) < f(x4) and
A(x. + ad) = Ax, = b. Therefore x, + ad satisfies the constraints and makes the objective
smaller. Contradiction with the assumption that x, is optimum of (1).

How can we guarantee that (2) is satisfied? To express condition (2) in a more convenient form,
we need to study subgradients.

3 Generalizing the gradient

Note that the ¢1-norm, f(x) = ||x||; is not differentiable everywhere: there is no gradient at the
intersections with the axes.

For example, in 1D f(z) is not differentiable for x = 0:



However f(x) = ||x||; is convex, which allows us to define the generalized version of the gradient.

The subgradient: Vector g is a subgradient of f(-) at x if:
f(2) > f(x) +g"(z —x).
For example if the function is smooth, the subgradient is unique and it is equal to the gradient:
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If the function has a kink, there are infinitely many subradients:

several supporting hyperplanes

X

The subdifferential: The set of subgradients of f(-) at x is called the subdifferential:

0f(x) = {g : g is subgradients of f at x}.

If f is differentiable at x, then 0f(x) = {V f(x)}.



For example:

{1}, >0
Olz|=4¢{-1}, <0
[-1,1], z=0
fz) = ||

Properties of the subdifferential:

L 0{af(x)} = adf(x)

2. 0 (Zszl fl-(x)) = ElT:l 0fi(x) where ) is the Minkowski sum of sets.
For example, if S = {a,b} and Sy = {c¢,d, e}, then

S1+S={a+ca+da+eb+c,b+db+e}.

3. If
_ T )
flx)= max <al X+ bl)
then
df (x) = conv{a,; : f(x) = a]x + b;}
where conv(-) denotes the convex hull.

For example if A = {a, b},
conv(A) ={fa+(1—-60)b:0<0 <1}

To illustrate this property, let f(z) = |x| = max(x, —z). Consider x = 0, then f(x) = z and
f(z) = —x. Therefore, 0f(x) = conv{+1, -1} = [-1,1].

These 3 rules allow us to calculate most subdifferentials. Let’s calculate the subdifferential of the
f/1-norm.

Assume that

z, #0, 1€T
=0, 1€T°".

where here and below 7°¢ denotes the complement of 7. Then v € 9 |x||; iff

v; = sign(z;), €T
v; € [-1,1], 1€Te.



This can be seen as follows:

x|, = z;| .
1%l ;| il
fi(x)

Therefore, when z; = 0:
fi(x) =max([0 ... 010 ... 0]x,[0 ... 0 =10 ... O]x)

and
dfi(x) =conv{[0 ... 010 ... 0,0 ... 0 =10 ... 0]}

From this (3) follows via property 2 of the subdifferential.

4 The dual certificate

Lemma 2. Assume f(-) is convex. Then, x minimizes f(-) iff 0 € If(x).

Proof. Let’s prove the lemma in one direction.

Take any other z, then by definition of subdifferential,
f(z) > f(x) +g"(z —x) for every g € Of (x).
Since 0 € 0f(x) is a subgradient, the inequality is true for g = 0. Hence, f(z) > f(x) for all z. [

Lemma 3. Assume f(-) is convex. Then, x minimizes f(-) over the affine set {z : Az = b} iff
there exists A such that ATA € Of(x) and Ax =b. The vector A is called the dual certificate.

Proof. Let’s proof the lemma in one direction.

Every element from the affine set {z : Az = b} can be written as z = x + h with h € AN/(A).
Since ATA € 0f(x), we have

(x)+(A™\)h

.
(%) + A éo}.l/

fx+h)=>f
f

= f(®).

Therefore, x minimizes f(-) over the affine set {z : Az = b}, as required. O

In the figure below we take A = [a; as] so that we have one equation

a1 as)] m] =b.

You can see the dual certificate in greed (the range R(AT) is orthogonal to N'(A)):
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so that x is the optimal point. Here it is clear that dual certificated does not exist, because ATA

does not belong to d||x||; for any A:

subgradients of || - ||; at xg

level sets of || - ||

so that x is not the optimal point.

N(A) +x,

Let’s return to the proof of Theorem 1: the measurements are given by b = Axg, where xq is
the true signal we need to reconstruct. Our strategy in proving the main theorem is to explicitly
construct the dual certificate A such that ATA = v € 9||xo||1, which, according to (3), is equivalent

to

. {sign([xo]i),

(_L 1)7

[xoi #0
[XO]i =0.



Let’s make the notation more compact. Let 7 denote the support of xg:
T = {i: [xo]i # 0}.

Let e € R® be the vector of signs of x¢ on its support 7: e = [sign(xg)]7. With this notation our
task is to find A such that:

ATy —e (ea)
H ATA || <1. (bnd)
Above, the notation |- - - |7 means the restriction of the components of the vector to the index set 7.

5 Construction of the dual certificate

We will take A to be a specific solution of (eq). Then we will prove that this A satisfies (bnd).

Without loss of generality we can permute the columns of A in such a way that the coordinates
corresponding to 7 are the first coordinates of A. Then we can partition A as follows:

Note that the equation
AT\ =e

has infinitely many solution because A; is an s X m matrix and m > s.

Among infinitely many solutions of (eq) we will choose the one with the smallest £2-norm:
i A
min |,
subject to AfTrk =e
which gives us the closed form solution as follows: A = AT(A;AT)_le.

To see that this A is indeed the solution of (4), note that every vector that satisfies the constraints
in (4) can be written as A = A+ n with ATn = 0. Therefore, since

(n,A) = <n,AT(A}A7)*1e> - <ATrn, (A}AT)*1e> =0,

we have, for n # 0,

~ 112
[, = 12+ ni3
= [MZ + [nlf3 + 2| (n, )]
0
= A3 + [In]3
> A3

We conclude that A is not the optimal point unless n = 0. Observe that it is not obvious that this
particular solution of (eq) has a chance to satisfy (bnd). Intuitively, we minimize some norm of A,



to make the vector shorter, so there is more chance for H[ATMTC « < 1 to be true. Minimizing
the ¢2-norm specifically is convenient because there is the closed form solution for it, as specified
above. In general, the dual certificate is not unique, and other constructions also exist.

Define z = AL A = AT A7 (AT A7) e. To prove (bnd), it remains to show that: |z;| < 1 for all i
with high probability, where the probability is over the random choice of A.

First note that A< is independent of AT(A;AT)_le. The vector z has a complicated distribution,
but we can control it by controlling A< and AT(A;-AT)_le separately.

Let’s calculate the £2-norm of A:

ME = [AraTar) el
=e'(ATAT) TATAT(ATAT) e
=e'(ATAT) e
In the following lemmas we will show that ||K||§ is small with high probability.
Claim 4. |\ = e (ATA7) e has the same distribution as s[(ATA7)7!;.
Proof. The claim follows from the fact that the Gaussian distribution is symmetric w.r.t. change

of basis as follows. Recall that e € R® is a vector of +1’s and —1’s. Therefore, ||e|l2 = /s. Let’s
change basis: e = Ue; where e; = [/5,0,...,0]T and U is a unitary matrix. Therefore,

e"(ATA7) le=e] UT(ATA) Ue
=el (UAFATUT) le
~el (ATAT) e
= s[(AFAT) 1

where we have used that A7UT and A7 have the same distribution because A7 is Gaussian and
U is unitary; the notation ~ means that the two random variables have the same distribution; and
the last step follows from the definition of e;. ]

Let us now recall the definition of x? random variable.

Definition 5. Let z1,..., 2 be i.i.d. N(0,1) random variables. Then q = 2% + --- + z,% has x>
distribution with k degrees of freedom.

Claim 6. m/[(A;AT)_l]n has x? distribution with m — s + 1 degrees of freedom.

Proof. To shorten notation let B = A7. Let b denote the first column of B and C be the matrix
that contains all columns of B, except for the first one: B = [b C]|. Then,

BTR _ [bTb ch}

C™ C'cC
Using the Matrix Inversion Lemma, it follows:

(B™B) "1y =1/k



where

k=b'b-b'C(CTC)"'Cb.

Note that
p=C(CTC)"'C™

is the projection of the vector b € R™ onto the column space of C. Using that (b — p,p) = 0, we
conclude that
k=b"b—b'p=|b-pl3.

Therefore, k is the squared distance between a Gaussian vector with zero mean and 1/m variance
and an s — 1 dimensional subspace. Therefore, mk = m/[(ATA7)7!];; has x? distribution with
m — s + 1 degrees of freedom. O

From Claims 4 and 6 we conclude that ms/ A5 has x? distribution with m — s + 1 degrees of
freedom.

Lemma 7. Let q be a x? distributed random variable with k degrees of freedom. Then, the following
large deviation bound holds:

Pk — q > ] < exp HU (5)

for all t > 0.

The tail bound is illustrated in the plot below:

\

In your homework you will use the important Chernoff bound technique and derive a similar but
somewhat weaker bound. If you are interested in the proof of the bound in Lemma 7, see [B.
Laurent and P. Massart, “Adaptive estimation of a quadratic functional by model selection”, 2000,
p. 1325].

Now we are ready to show the following tail bound for ||A|,:

Claim 8.

ms t2
PlIAg >4/ ————————| < _ .
[” I m—s+1—t exp[ 4(m—s+1)]

Proof. Since ms/ |3 is x? distributed with m — s+ 1 degrees of freedom, it follows from Lemma 7
that

P +1 ms >t < [ t* ]
m — S — 5 ex —_———— | .
HM@ = &Xp 4m —s+1)
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Note that
ms

ms
Plm—s+1-—5 st =pP||2 _ms
[m s+ 2>] [H I > m—s+1-—t

which concludes the proof. O

Next, consider A;J\. for a fixed A. This is a Gaussian random vector. Each component of this
vector is N'(0, - IAl[3). Therefore, using the Chernoff tail bound! for Gaussian Q(-) function that
you will derive in your homework, we conclude:

P [l > 1 My < /o | <P [l > 1w~ A (0, ——
’I?’L-S—Fl-t L m—5+1_t

[ —s+1-—t —s+1-—t
e W~N<Qé;ﬂ
S S m—s+1—t

=P ||u] >,/m_3j1_t\w~/\f(0,l)]

m—s+1—t
2s '

< 2exp [—

Using the union bound and the fact that 7°¢ contains n — s elements we obtain:

m—s+1-—1t t2
1}<2 - S mmswi Tt SN
N~ (n s)exp[ 7 ]—l—exp[ 4(m—s+1)]

This is an upper bound on the probability of failure. We would like to choose t so that this
probability is less than 1/n. First, let’s find a condition on ¢ so that the second term is less
than 1/n:

P [H[ATMTC

t2 1
«p | — -
P dm—s+1)| ~—n
2
_ <1
< 4m—s+1) — og(n)

T Hm_st1) "
& t? > 4(m — s +1)log(n)

so we can choose t = 21/(m — s + 1)log(n) and plug this value into the first term. Now we want
to find a value of m such that the first term is less than 2/n:

m—s+1—2y/(m—s+1)log(n)
2s

2(n—s)exp |— < % (6)

2

1Q(U) < e~ /2

10



First show that

m—s+1—2y/(m—s+1)log(n) >
em—s+1>4y/(m—s+1)log(n)

</ (m—s+1) > 44/log(n)
& m—s+1>16log(n)

(m—s+1)

N

which is true because s > 2 and m > 9slog(n) by assumption:

m— s+ 1> 9slog(n) — s > 8slog(n) > 16log(n).

Therefore, to prove (6) it remains to show

—s+1 1
(n—s)exp | ———— -
n
[ 9s log ] 1
<~ nexp E

8sl 1

< exp [ SogU] <L

4s n?

1
< exp[—2log(n)] = o

This completes the proof of the main theorem.
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