
MLISP: Machine Learning in Signal Processing

Lecture 2

Prof. V. I. Morgenshtern

Scribe: M. Elminshawi

Illustrations: The elements of statistical learning, Hastie, Tibshirani, Friedman

Agenda:

1. Supervised learning

2. Linear regression

3. Gradient descent

4. The normal equations for linear regression

1 Supervised learning

Let’s return to the example of house prices:

Living area m2 Price(1000$)

195 400
149 330
223 369
132 232
... ...
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Figure 1: House price vs. living area

How can we learn to predict the house prices? This is an example of supervised learning problem.
Here, there is one input variable or feature, the living area. It has some influence on the output
variable (aka target), the house price. The goal is to use the input variable to predict the output.

If the output variable is continuous (price), the problem is called regression. If the output variable
is discrete (for example house vs. apartment), the the problem is called classification.

Notation: We will use x(i) to denote the input variables and y(i) to denote the output variables.
A pair (x(i), y(i)) is called the training example. The dataset {(x(i), y(i))}ni=1 is called the training
set.

Our goal is to learn the function h : X → Y, where X is the set of input values and Y is the set of
output values, so that h(x) is a “good” predictor of y.

Next, we will consider two simple approaches to prediction: linear regression and nearest neighbors.

2 Linear regression

Let’s make our example more interesting:

Living area m2 #bedrooms Price(1000$)

195 3 400
149 3 330
223 3 369
132 2 232
... ... ...

Here the feature vector x = [x
(i)
1 , x

(i)
2 ]T is a two-dimensional vector in R2. Specifically, x

(i)
1 is the

living area of the ith house in the training set, and x
(i)
2 is its number of bedrooms in that house.
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Notation: In this course we will use the boldface small letters x =

[
x1
x2

]
to denote vectors and the

boldface capital letters A =

[
a11 a12
a21 a22

]
to denote matrices.

By looking at Figure 1 we might decide to model y as a linear function of x:

hθ(x) = θ0 + θ1x1 + θ2x2.

This is a simple choice and many other reasonable functional forms for h are possible.

Above, θ0, θ1, θ2 are the parameters of the model. There are p = 3 parameters in our example. It
is convenient to set x0 = 1 so that

hθ(x) =

p−1∑
i=0

θixi = θ
Tx. (1)

Given the training set, how do we pick or learn the parameters θ? One reasonable method is to
make hθ(x) to be close to y, at least for the training examples we have. Define the cost function:

J(θ) =
1

2

n∑
i=1

(
hθ(x(i))− y(i)

)2
. (2)

As we will see, this cost function gives rise to the ordinary least squares estimator.

3 Gradient descent

We want to choose θ to minimize J(θ). How?

Observe that J(θ) is a quadratic function of θ, so it should be “easy” to find its minimum. For
example, we can start with an initial guess for θ and then repeatedly change θ to make J(θ) smaller.
To make J(θ) smaller, we can, for example, make a small step in the direction of negative gradient
of J(θ), which implies the following update rule:

θj := θj − α
∂

∂θj
J(θ) for all j = 0, ..., p− 1.

Here α is called the learning rate. In the matrix notation this can be written as:

θ := θ− α∇θ J(θ)

where

∇θ J(θ) =


∂J
∂θ0
...
∂J

∂θp−1


is the gradient vector.

Note, this is a very natural algorithm, because the direction of negative gradient is the direction of
steepest local descent of J(·).
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Let’s calculate ∂J
∂θj

first for the case when we have only one training example:

∂

∂θj
J(θ) =

∂

∂θj

1

2
(hθ(x)− y)2

= 2× 1

2
(hθ(x)− y)× ∂

∂θj
(hθ(x)− y)

= (hθ(x)− y)× ∂

∂θj

(
p−1∑
i=0

θixi − y

)
= (hθ(x)− y)xj .

For a single training example (x(i), y(i)) this gives the update rule:

θj := θj + α
(
y(i) − hθ(x(i))

)
x
(i)
j for every j.

Note that the magnitude of the update is proportional to the error term y(i) − hθ(x(i)).

For n training examples our update rule becomes:

θj := θj + α

n∑
i=1

(
y(i) − hθ(x(i))

)
x
(i)
j for every j.

This is called batch gradient descent because this method looks at the entire training set at each
step: Note the summation,

∑n
i=1.

Here is one run of the algorithm:

Figure 2: Contour plot of J(·) and steps of gradient descent.

Ellipses are contours of the quadratic function J(θ).

For the dataset with area only, hθ(x) looks like the straight line:
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An alternative to batched gradient descent is stochastic gradient descent, where at each update step
we only look at one data point.

Repeat until convergence:

for i in [1 : n] :

θj := θj + α
(
y(i) − hθ(x(i))

)
x
(i)
j for every j.

This is a good alternative to batched gradient descent in practice, because this algorithm is much
faster.

4 The normal equations for linear regression

Recall that we are trying to minimize the quadratic cost function, J(θ) defined in (2), on the
training set. We model our output variables as a linear function of the input variables, as specified
by hθ(x) in (1). Here is a picture describing the situation:
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Above, the red dots are the points from the training set and black lines denote the distances from
these points to the linear function. As we have seen above, one way to minimize J(·) is to use the
gradient descent algorithm.

Since J(·) is a quadratic function, it can also be minimized in closed form. To make the derivation
simpler, it is convenient to work with the matrix derivatives.

Matrix derivative: For a function f : Rn×p 7−→ R we define the derivative of f with respect to
A to be:

∇A f(A) =


∂f
∂A11

· · · ∂f
∂A1p

...
. . .

...
∂f
∂An1

· · · ∂f
∂Anp

 .
Example:

A =

[
A11 A12

A21 A22

]
f(A) =

3

2
A11 + 5A2

12 +A21A22

∇A f(A) =

[
3
2 10A12

A22 A21

]
.

We will also need the trace of a matrix:

trA =
n∑
i=1

Aii.
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Properties of the trace:

trAB = trBA, if AB is square

trABC = trCAB = trBCA, if ABC is square

trABCD = trDABC = trCDAB = trBCDA

trA = trAT

tr(A + B) = trA + trB

tr(aA) = a trA.

Properties of matrix derivatives: (without proof, more in review session):

∇A trAB = BT (3)

∇AT f(A) = (∇A f(A))T (4)

∇x x
TAx = 2Ax (if A is symmetric) (5)

∇A |A| = |A|(A−1)T (6)

where |A| is the determinant of the matrix A.

Now we are ready to derive the normal equations.

Let’s stack out data points as rows of a matrix:

X =


− (x(1))T −
− (x(2))T −

−
... −

− (x(n))T −

 .
Also, let y be the n-dimensional vector containing all the target values from the training set:

y =

y
(1)

...

y(n)

 .
Now,

Xθ− y =

(x(1))Tθ

...

(x(n))Tθ

−
y

(1)

...

y(n)

 =

hθ(x(1))− y(1)
...

hθ(x(n))− y(n)


where we used hθ(x(i)) = (x(i))Tθ.

Therefore,

J(θ) =
1

2

n∑
i=1

(hθ(x(i))− y(i))2 =
1

2
(Xθ− y)T(Xθ− y).

Since J(θ) is a quadratic function of θ it has a unique global minimum. To find this minimum it
is sufficient to compute the gradient of J(θ) and set the gradient to zero:

∇θ J(θ) = 0. (7)
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Lets calculate ∇θ J(θ):

∇θ J(θ) = ∇θ

1

2
(Xθ− y)T(Xθ− y)

=
1

2
∇θ(θ

TXTXθ− θ
TXTy − yTXθ + yTy)

=
1

2
∇θ(θ

TXTXθ− 2θ
TXTy + yTy)

=
1

2
(2XTXθ− 2XTy).

where in the last step we used (5) for the first term and (3) for the second term.

With this, (7) yields:
XT(Xθ̂− y) = 0. (8)

Above, θ̂ denotes the optimal value for θ, i.e. the value that minimizes J(θ). Rearranging the
terms we obtain the normal equations:

XTXθ̂ = XTy.

We conclude that the value of θ that minimizes J(θ) is given in closed form by the equation:

θ̂ = (XTX)−1XTy.

Of corse, this formula is true only if the matrix XTX is invertible.

Let’s provide a geometric interpretation for these equations. First, recall that if x0 is an input
vector, then the predicted output for this input is xT

0 θ̂. Therefore ŷ = Xθ̂ in (8) is the vector of
predicted outputs for the training set.

It turns out that the predicted output vector is the projection of the training output vector y onto
the plane spanned by column vectors of X as depicted below:

To see this note first that
ŷ = θ̂0x0 + . . . θ̂p−1xp−1

is the linear combination of columns of X = [x0, . . . ,xp−1], i.e. ŷ is in the span of x0, . . . ,xp−1.
Second, it follows from equation (8) that the error vector ŷ− y is orthogonal to all columns of X.
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