
MLISP: Machine Learning in Signal Processing

Problem set 3

Prof. V. I. Morgenshtern

Problem 1: Expected maximum of iid Gaussians random variables

Let z1, . . . , zN be independent identically distributed (i.i.d.) random variables with zi ∼ N (0, σ2).
Let y = maxi zi. Prove that E[y] ≤ σ

√
2 logN .

Hints:

• Calculate the moment generating function of zi, and prove that E[exp(tzi)] = exp(t2σ2/2).

• Use the Jensen’s inequality and the union bound to show exp(tE[y]) ≤
∑N

i=1 E[exp(tzi)].

• Take the log in the bound derived above, optimize the bound over the choice of t to finish
the proof.

Problem 2: Phoneme classification [Ref: Elements of statistical learning]

Write a program to classify the phoneme data using logic regression on raw features and logistic
regression with splines. Your goal is to reproduce results in Lecture 7, Section 3. The phone data
is in phoneme data.txt and the description of the data is in phoneme info.txt file.

• Extract the data corresponding to ‘aa’ and ‘ao’ phonemes.

• Plot the data.

• Split the data into the training and the test set.

• Fit the logistic regression to the raw data. In this case your output variables are binary,
corresponding to ‘aa’ or ‘ao’ phonemes, your input variable are the p = 256 dimensional
vectors with frequency information x. Report performance on the train and the test set. Plot
the coefficients θ.

• Since there are many correlated features, you should filter them using a smooth basis of cubic
splines.

• Decide beforehand on a series of five different choices for the number and position of the
knots. Form the p×D spline matrix H, where D � p is the number of degrees of freedom in
the model that is determined by the number and positions of the knots. Your new features
are x∗ = HTx.

• Fit the spline-regularized logistic regression to each choice.

• Use the test set to make the final selection of the positions of the knots.
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• Report performance on the train and the test set. Compare to the unregularized case. Plot
the coefficients θ.

Hint: You don’t need no write a gradient descent algorithm to fit the model in this problem. Use
cvxpy instead.

Problem 3: Haar wavelets

1. Show that the Haar wavelet transform of a signal of length N = 2J can be computed in O(N)
computations. Implement the corresponding algorithm.

2. Use your algorithm to compute the Haar wavelet transform of the following functions on the
interval [−0.5, 0.5]. (The functions should be sampled to have 2J sampling points).

•

f1(t) =

{
1, t < 1/3

0, t ≥ 1/3

• f2(t) = sin(t).

3. Display the wavelet coefficients for both functions.

4. Make histograms of wavelet coefficient sizes for the two cases. Compare and discuss the
approximate sparsity in the wavelet coefficients of the two functions.

5. Set 50 percent of the smallest wavelet coefficients for both functions to zero. Take the inverse
wavelet transform and display the resulting functions.

Problem 4: Regularization and bias variance trade-off [Ref: Stanford CS229 class]

In this exercise, your goal is to implement regularized linear regression to predict the amount of wa-
ter flowing out of a dam using the change of water level in a reservoir. In the file cross validation.py

your are given the dataset containing historical records on the change in the water level in a reser-
voir, x, and the amount of water flowing out of the dam, y. This dataset is divided into three
parts:

• A training set that your model will learn on: X, y

• A cross validation set for determining the regularization parameter: Xval, yval.

• A test set for evaluating performance. These are “unseen” examples which your model did
not see during training: Xtest, ytest

1. Visualize the training data on a scatter plot.

2. Recall that regularized linear regression has the following cost function:

J(θ) =
1

2n

n∑
i=1

(
hθ(x(i))− y(i)

)2
+

λ

2n

p∑
j=1

θ2j
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where n is the number of training examples, p is the number of features, λ is the regularization
parameter. Note that you should not regularize the θ0 term. We start by considering only
the single original feature, the water level, and, therefore, hθ(x) = θ0 + θ1x. Calculate the
gradient of J(θ) with respect to θ.

3. Implement the gradient descent algorithm to fit the model, test that it converges for λ = 0.
Plot the resulting linear fit on top of the training data scatter plot.
Hint: If you want to make the problem simpler, you can use cvxpy to fit the model, instead
of gradient descent.

4. Next, your goal is to plot the learning curve. Set λ = 0. The training set contains 12 data
points. Fit the model by using only the first two data points (n = 2). Recall that the error
for a dataset is defined as:

Jerror(θ) =
1

2n

n∑
i=1

(
hθ(x(i))− y(i)

)2
Calculate Jerror of the fitted model on this two-data-points-large training set (this is the
training error). Record the result. Calculate the Jerror of the fitted model on the whole
validation set. Record the result. Next repeat the processes by using the first three data
points for training (n = 3), then the first four data points (n = 4) and so on. Plot the
training error, as a function of the number of data points used. This is the learning curve.
Plot Jtrain on the validation set (this is the validation error) as the function of the number
of data points used. If you did everything correctly, you should observe the following. The
training error increases as the number of training examples grows. The validation error
decreases as the number of training examples grows. The validation error is higher than the
training error.

5. You can observe that the validation error is always high and the training error becomes high
when the number of training examples is increased. This reflects a high bias problem in the
model – the linear regression model is too simple and is unable to fit our dataset well. In
this part of the exercise, you will address this problem by adding more features, using the
polynomial regression. Our hypothesis has the form:

hθ(x) = θ0 + θ1 · (water level) + θ2 · (water level)2 + . . .+ θp · (water level)p.

For this part of the exercise, you will be using a polynomial of degree p = 8. Proceed as
before to fit this model without regularization. Plot the learning and validation curves. Also
plot the fitted polinomial curve on top of the training data scatter plot.

Important tip: To make the problem numerically well conditioned, it is crucial to normalize
the features before fitting the polinomial model above. This is because, for example with
x = 40 will now have a feature x8 = 408 = 6.5 · 1012 which will make numerical algorithms
unstable. Rescale the features by subtracting the mean and dividing by the standard deviation
for each feature separately. Don’t forget to account for this rescaling when working with the
validation set and the test set.

When you plot the learning curve, you should observe that the training error is extremely
small. The validation error is large. This means that the model has very high bias and
essentially fits the noise.
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6. To avoid this problem, you can now use regularization. Fit the regularized regression for
λ = {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10}. Plot the learning and the validation curves.
Use the validation set to select the best value for λ, i.e. the value that makes the validation
error (when the model is fitted on the whole dataset with n = 12) as small as possible. Plot
the resulting polynomial fit on top of the training data scatter plot for the optimal λ and for
λ = 100. Discuss your results.

7. Run prediction with the best possible λ on the test set. Calculate error Jerror on the test
set. Make sure that the error on the test set is not too much larger than the error on the
validation set. This means that your model is well regularized and you can have confidence
that it will perform well on future data.

Problem 5: Wavelet denoising

In class we talked about denoising via wavelet shrinkage at the level σ
√

2 log(n), where σ2 is the
variance of the noise. In this exercise you are provided with four signals that are stored as columns
of the text file clean signal.txt. The noisy versions of the same signals are stored as columns of
the text file noisy signal.txt, σ = 1. You can use the read data.ipynb to read the data.

1. Use pywt package in Python to compute the wavelet transforms of the noisy and noiseless
version signals. Visualize the wavelet coefficients at all levels.

Hint: pywt.wavedec is the function you can use. You are also free to choose the types and
levels of the wavelet for this problem.

2. Use the soft thresholding formula derived in class to denoise the signals. Take the inverse
wavelet transfrom and visualize the results. Report the l2 norm of the difference between
the clean signal and the reconstructed signal. Compare it to the l2 norm of the difference
between the clean signal and the noisy signal. By how much were you able to denoise?

3. Form the wavelet transform matrix corresponding to the wavelet transform that you used
above. This is a 1000× 1000 matrix in this case.

Hint: To form this matrix, you can generate all the standard basis vectors (1 sparse vectors
with exactly one nonzero element) one-by-one and apply pywt.wavedec to each of these
vectors. This recovers the corresponding wavelet transform matrix column-by-column.

4. Use cvxpy to implement wavelet shrinkage in the form of l1 minimization problem.

5. Report the denoising results in the same way as above. If everything is done correctly, your
results should be the same as above.

Problem 6: Debugging machine learning algorithms (exam practice)

Our goal is to classify melons into ‘good’ melons (+1) and ‘bad’ melons (-1). Melons can be
distinguished based only on their color and smell. Let H be the set of all circles in R2. Each circle
h ∈ H defines the classification rule: all melons whose (smell, color) is inside the circle are classified
as ‘good’, all melons whose (smell, color) is outside the circle are classified as ‘bad’. Each circle h
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is defined by (r, w1, w2), the radius and the coordinates of the center. The labeled training sample
of melons is

{(xi, yi)}ni=1, xi ∈ R2, yi ∈ {1,−1}
where xi = [xi1, xi2]

T are the features (smell, color) and yi are the labels (+1) for ‘good’, (-1) for
‘bad’. We used the following criterion to determine the optimal circle h∗ ∈ H for prediction:

(r∗, w∗
1, w

∗
2) = arg min

r,w1,w2

n∑
i=1

exp(−yi[r2 − ((xi1 − w1)
2 + (xi2 − w2)

2)]).

Unfortunately h∗ we found did not meet the expectations, as it misclassified a non-negligible pro-
portion of the melons used at test time. Your goal is to analyze the problem according to the
additional instructions below.

1. Scenario 1: h∗ had a very low training error.

• Give a possible explanation for the large test error of h∗.

• Draw a training set, the prediction function h∗, and the true distribution (if needed)
that demonstrates your explanation.

• Propose a solution to mitigate this problem that is consistent with your drawing.

2. Scenario 2: The sample size was large, and h∗ had training error of 0.4.

• Give a possible explanation for the large test error of h∗.

• Draw a training set, the prediction function h∗, and the true distribution (if needed)
that demonstrates your explanation.

• Propose a solution to mitigate this problem that is consistent with your drawing.
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3. Suppose that with the current training set we obtain the following solution:

In the figure, ‘+’ stands for good melons and ‘-’ stands for bad melons. Assume that it is OK
to mistakenly classify some of the good melons as bad ones, but it is absolutely not allowed to
classify the bad melons as good ones. We decide to modify our training procedure to address
this requirement. We use regularization to do that:

(r∗, w∗
1, w

∗
2) = arg min

r,w1,w2

n∑
i=1

exp(−yi[r2 − ((xi1 − w1)
2 + (xi2 − w2)

2)]) + λΩ(r, w1, w2)

where Ω(r, w1, w2) is the regularizer.

• Suggest a suitable regularizer.

• Write down its mathematical form.

• Draw a regularized solution.

• What is the effect of increasing λ on the solution?

Problem 7: Haar wavelets (exam practice)

Consider the function f : [0, 1]→ R defined as

f(x) =

{
2, x ∈ [0, 12)

4, x ∈ [12 , 1]

Your goal is to find the approximation to f(x) in the subspace V0
⊕
W0
⊕
W1. Please restrict all

computations to the interval [0, 1] and follow the step-by-step instructions.

1. • What are the dimensions of the spaces V0,W0,W1?

• Plot the basis functions of V0,W0,W1.

2. Express the projection of the function f onto the subspace V0
⊕
W0
⊕
W1 in terms of the

wavelet coefficients and the basis functions. Justify in details why this decomposition is true.

Hint: You do not need to compute the coefficients explicitly here. This is done in the next
subtask.
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3. Compute the Haar wavelet coefficients, representing the projection of f onto W1.

4. Give an example of a function for which Haar wavelet coefficients corresponding to W1 are
zero.
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