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Problem 1: Reduction of convex optimization problems to standard form

First, transform the objective:

‖Ax− b‖22 = (Ax− b)T(Ax− b)

= (xTAT − bT)(Ax− b)

= xTATAx− bTAx− xTATb + bTb

= xTATAx− 2bTAx + bTb.

Set
P = 2AT, cT = 2bTA, d = bTb

and observe that the objective is transformed to standard form.

Second, transform the constraints. Set

G =

[
Inxn 0nxn

0nxn −Inxn

]
, h =

[
u
−l

]
2nx1

and observe that l � x � u is equivalent to Gx � h.

Problem 2: Chernoff bound

1. We have to prove that:
esX ≥ esvIv(X), for all s ≥ 0. (1)

Let’s first look at the case when X ≥ v. In this case, Iv(X) = 1, and therefore (1) is equivalent
to :

esX ≥ esv

which is true since sX ≥ sv because s ≥ 0.

In the case when X < v, we have Iv(X) = 0 so that (1) is equivalent to

esX ≥ 0

which is always true.

2. From the previous point we know that

esX ≥ esvIv(X), for all s ≥ 0.
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taking the expectation on both sides of this inequality we have

E[esX ] ≥ esvE[Iv(X)], for all s ≥ 0.

Clearly,

E[Iv(X)] =

∫ ∞
−∞

Iv(x)pX(x)dx =

∫
X≥v

Iv(x)pX(x)dx = P[X ≥ v].

and therefore
E[esX ] ≥ esvP[X ≥ v].

Since the inequality holds for all s ≥ 0 we conclude:

P[X > v] ≤ min
s≥0

e−svE[esX ]

.

3. Now we want to show that for a Gaussian variable X (with zero mean and unit variance):

P[X > v] ≤ e−
v2

2 .

Let’s compute the the characteristic function of X:

E[esX ] = e
s2

2 .

Combining the result from the point 2 with this, we get:

P[X > v] ≤ e−svE[esX ] = e−sve
s2

2 .

Now in order to get the tightest bound, we minimize the right-hand side over s. To find the
minimum, compute the derivative of the right-hand side and set it to zero:

−ve−sve
s2

2 + se−sve
s2

2 = 0 =⇒ (s− v)e−sve
s2

2 = 0 =⇒ s = v.

Therefore, the tightest possibe bound is:

P[X > v] ≤ e−v2e
v2

2 = e
v2

2 .

4. Following the same steps as in the previous point we have:

P[k −Q ≥ t] ≤ min
s≥0

e−st
∫ k

−∞

1

2k/2Γ(k/2)
(k − q)k/2−1e−

k−1
2 esqdq

= min
s≥0

e−st
∫ ∞
0

1

2k/2Γ(k/2)
e−q/2es(k−q)qk/2−1dq

= min
s≥0

es(k−t)
∫ ∞
0

1

2k/2Γ(k/2)
e−(1+2s)q/2(1 + 2s)k/2−1(1 + 2s)−(k/2−1)ds

= min
s≥0

(1 + 2s)−k/2es(k−t).
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Optimizing w.r.t. s yields

− k

2
(1 + 2s)−k/2−12es(k−t) + (1 + 2s)−k/2(k − t)es(k−t) = 0⇔

es(k−t)(1 + 2s)−k/2
(
− k

1 + 2s
+ k − t

)
= 0⇔

2s(k − t) = 0⇔

s =
t

2(k − t)
.

Therefore, for 0 < t < k:

P[Q ≤ k − t] = P[k −Q ≥ t] ≤
(

1 +
t

k − t

)−k/2
et/2.

Problem 3: Cost function of logistic regression is convex

We will separately show that the following functions are convex

−
n∑

i=1

y(i) log hθ(x(i)), −
n∑

i=1

(1− y(i)) log (1− hθ(x(i)))

and then use the fact that the sum of convex functions is convex.

First, let’s prove that

f1(θ) =
n∑

i=1

−y(i) log hθ(x(i))

is a convex function of θ. To do so it is sufficient to establish that every term in the sum is a convex
function of θ. To prove that

f2(θ) = −y log hθ(x)

we will prove that the Hessian matrix of f2(θ) is positive semidefinite:

∂(−y log(hθ(x))

∂θj
=
−y
hθ(x)

hθ(x)(1− hθ(x))xj = −y(1− hθ(x))xj

so that
∂2(−y log(hθ(x)))

∂θj∂θk
= yhθ(x)(1− hθ(x))xjxk

and finally

∇2 f2(θ) = yhθ(x)(1− hθ(x))


x1

2 x1x2 ... x1xn
x2xn x2

2 ... x2xn
... ... ... ...
xnx1 xnxn ... xn

2

 = yhθ(x)(1− hθ(x))xxT.

This matrix is positive semidefinite, because yhθ(x)(1− hθ(x)) is a nonnegative scalar and xxT is
a positive semidefinite matrix.
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To prove that

f3(θ) = −
n∑

i=1

(1− y(i)) log (1− hθ(x(i)))

is convex we proceed in a similar way. Note that

∂ log(hθ(1− x))

∂θj
= − 1

1− hθ(x)
hθ(x)(1− hθ(x))xj = −hθ(x)xj

so that
∂2(−(1− y) log(hθ(1− x)))

∂θj∂θk
= (1− y)hθ(x)(1− hθ(x))xjxk

from which the convexity follows in exactly the same way as above.

Problem 8: Solving underdetermined systems of equations (exam practice)

1. The equation can be written as
2x1 + x2 = 6.

Therefore the set of solutions is {[x1 x2] : x2 = 6− 2x1}.
Here is this set:

2. The solution is the point x = [3 0]. The following picture contains the graphical proof:
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In the figure, the unit l1 ball is depicted. This ball is expanded in a self-similar way until it
first hits the set {[x1 x2] : x2 = 6− 2x1}.

3. The solution vector x = [3 0] is one-sparse, because it contains only one nonzero element.

Problem 9: Convex optimization problems (exam practice)

1. The function is the composition of basic functions. It is convex, as follows from the disciplined
convex programming decomposition diagram:
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2. Here we optimize a convex (quadratic) function subject to linear (and hence convex) con-
straints. Therefore, this is a convex optimization problem.

3. Here we optimize a convex (linear) function subject to nonconvex constraints. Therefore, this
is not a convex optimization problems.

4. Here we optimize a convex (linear) function subject to convex constraints. Therefore, this is
a convex optimization problems.
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