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Problem 1: Reduction of convex optimization problems to standard form
First, transform the objective:
| Ax — b2 = (Ax — b)"(Ax — b)
= (x"AT - b")(Ax — b)
=x'ATAx — b"Ax — x"A™b + b’b
=x"ATAx — 2b"Ax + b’b.

Set
P =2AT cT=2b"A, d=Db"b

and observe that the objective is transformed to standard form.

Second, transform the constraints. Set

Onxn _Inxn ’ _1 onxl
and observe that 1 < x < u is equivalent to Gx < h.
Problem 2: Chernoff bound

1. We have to prove that:
X > eI, (X), for all s > 0.

(1)

Let’s first look at the case when X > v. In this case, I,,(X) = 1, and therefore is equivalent

to :

5X> SV

(& (&

which is true since sX > sv because s > 0.

In the case when X < v, we have I,,(X) = 0 so that is equivalent to
X >0
which is always true.
2. From the previous point we know that

X > e*I,(X), for all s > 0.



taking the expectation on both sides of this inequality we have
E[e*X] > eE[L, (X)), for all 5 > 0.

Clearly,
E[I,(X)] = / Iy(x)px (x)dx = / Iy(x)px (x)dx = P[X > v].

—00 X>v

and therefore
E[e*X] > e*P[X > v].

Since the inequality holds for all s > 0 we conclude:

P[X > v] < mine *'E[e*]
s>0

3. Now we want to show that for a Gaussian variable X (with zero mean and unit variance):

N

v

PX >0v] <e 7.

Let’s compute the the characteristic function of X:

2

E[e*X] =e7.

Combining the result from the point 2 with this, we get:

2

P[X > v] < e *VE[e*X] = e Ve 2.

Now in order to get the tightest bound, we minimize the right-hand side over s. To find the
minimum, compute the derivative of the right-hand side and set it to zero:

82 S2 82
—ve e 4+ s e =0 = (s—v)e e? =0 = s=u.
Therefore, the tightest possibe bound is:
2 v2 v2
PX >v]<e ez =e2.
4. Following the same steps as in the previous point we have:
Blk—Q>f<mine [ — L (kg1 esng
— — 2
¢ [~ 1 /2 s(k—q) k/2—1
— nin =S —q/2s(k—q -
0 /0 ey ¢ 1
oo
1
i s(k—t) —(1+25)q/2 k/2—1 —(k/2-1)
mine /0 2"?/21“(19/2)6 (14 2s) (1+2s) ds
= min(1 + 2s)#/2esk1),
s>0



Optimizing w.r.t. s yields

o g(l + 28)7k/2712es(k7t) + (1 + 28)716/2(1{; - t)es(kft) —0<

S(k‘—t)l 2 —k/2 [ _ —

e (1+2s) ( 1+2$+k t) 0&
2s(k—t) =0«

ST ok — 1)

Therefore, for 0 < t < k:

; —k/2
PQ<k—t]=Pk-Q>t] < <1+k_t> et/?.

Problem 3: Cost function of logistic regression is convex

We will separately show that the following functions are convex

n

=Y 4P loghe(x™),  => (1 —yP)log (1 — he(x™))
i=1

i=1
and then use the fact that the sum of convex functions is convex.

First, let’s prove that

n

£1(8) = =y log he(xV)

i=1
is a convex function of 8. To do so it is sufficient to establish that every term in the sum is a convex
function of 0. To prove that

f2(0) = —ylog he(x)

we will prove that the Hessian matrix of f(8) is positive semidefinite:

d(—ylog(he(x))  —y o ‘
56, = he(x)he(x)(l ho(x))z; = —y(1 — he(x));
so that 82( log(ho(x)))
—yloglheg(X _ _ .
90,90 = yhe(x)(1 — he(x))z T8
and finally
1‘12 r1x2 ... T1Tp
Tox, w2 .. TaTy

V2 f2(8) = yhe(x)(1 — he(x)) = yhe(x)(1 — he(x))xx .

Tn®l Tpp . T2

This matrix is positive semidefinite, because yhg(x)(1 — hg(x)) is a nonnegative scalar and xx' is
a positive semidefinite matrix.



To prove that

n

£(8) = = S(1 — y®) log (1 — he(x)))

i=1
is convex we proceed in a similar way. Note that
0log(he(1l — x)) 1

55 = T a0~ () = ()

so that
&*(—=(1 — y) log(he(1 — x)))
00,00

from which the convexity follows in exactly the same way as above.

= (1= 9)he(x)(1 = he(x))x s

Problem 8: Solving underdetermined systems of equations (exam practice)
1. The equation can be written as
2x1 4+ x2 = 6.

Therefore the set of solutions is {[z1 x2] : 2 = 6 — 21 }.

Here is this set:

x2

55%, @L

5ol ous

2. The solution is the point x = [3 0]. The following picture contains the graphical proof:
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In the figure, the unit 11 ball is depicted. This ball is expanded in a self-similar way until it
first hits the set {[z1 x2] : x2 = 6 — 221 }.

3. The solution vector x = [3 0] is one-sparse, because it contains only one nonzero element.

Problem 9: Convex optimization problems (exam practice)

1. The function is the composition of basic functions. It is convex, as follows from the disciplined
convex programming decomposition diagram:
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. Here we optimize a convex (quadratic) function subject to linear (and hence convex) con-
straints. Therefore, this is a convex optimization problem.

. Here we optimize a convex (linear) function subject to nonconvex constraints. Therefore, this
is not a convex optimization problems.

. Here we optimize a convex (linear) function subject to convex constraints. Therefore, this is
a convex optimization problems.



