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1 Introduction

Hilbert spaces [1, Def. 3.1-1] and the associated concept of orthonormal bases are of fundamen-
tal importance in signal processing, communications, control, and information theory. However,
linear independence and orthonormality of the basis elements impose constraints that often make
it difficult to have the basis elements satisfy additional desirable properties. This calls for a the-
ory of signal decompositions that is flexible enough to accommodate decompositions into possibly
nonorthogonal and redundant signal sets. The theory of frames provides such a tool.

This chapter is an introduction to the theory of frames, which was developed by Duffin and Scha-
effer [2] and popularized mostly through [3–6]. Meanwhile frame theory, in particular the aspect
of redundancy in signal expansions, has found numerous applications such as, e.g., denoising [7,
8], code division multiple access (CDMA) [9], orthogonal frequency division multiplexing (OFDM)
systems [10], coding theory [11, 12], quantum information theory [13], analog-to-digital (A/D) con-
verters [14–16], and compressive sensing [17–19]. A more extensive list of relevant references can be
found in [20]. For a comprehensive treatment of frame theory we refer to the excellent textbook [21].

2 Examples of Signal Expansions

We start by considering some simple motivating examples.
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Figure 1: Orthonormal basis in R2.

Example 2.1 (Orthonormal basis in R2). Consider the orthonormal basis (ONB)

e1 =

[
1
0

]
, e2 =

[
0
1

]

in R2 (see Figure 1). We can represent every signal x ∈ R2 as the following linear combination of
the basis vectors e1 and e2:

x = 〈x, e1〉 e1 + 〈x, e2〉 e2. (1)

To rewrite (1) in vector-matrix notation, we start by defining the vector of expansion coefficients
as

c =

[
c1
c2

]
,

[
〈x, e1〉
〈x, e2〉

]
=

[
eT1
eT2

]
x =

[
1 0
0 1

]
x.

It is convenient to define the matrix

T ,

[
eT1
eT2

]
=

[
1 0
0 1

]
.

Henceforth we call T the analysis matrix ; it multiplies the signal x to produce the expansion
coefficients

c = Tx.

Following (1), we can reconstruct the signal x from the coefficient vector c according to

x = TTc =
[
e1 e2

]
c =

[
e1 e2

] [〈x, e1〉
〈x, e2〉

]
= 〈x, e1〉 e1 + 〈x, e2〉 e2. (2)

We call

TT =
[
e1 e2

]
=

[
1 0
0 1

]
(3)

the synthesis matrix ; it multiplies the coefficient vector c to recover the signal x. It follows from (2)
that (1) is equivalent to

x = TTTx =

[
1 0
0 1

] [
1 0
0 1

]
x. (4)

The introduction of the analysis and the synthesis matrix in the example above may seem artificial
and may appear as complicating matters unnecessarily. After all, both T and TT are equal to the
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ẽ1

ẽ2

Figure 2: Biorthonormal bases in R2.

identity matrix in this example. We will, however, see shortly that this notation paves the way to
developing a unified framework for nonorthogonal and redundant signal expansions. Let us now
look at a somewhat more interesting example.

Example 2.2 (Biorthonormal bases in R2). Consider two noncollinear unit norm vectors in R2.
For concreteness, take (see Figure 2)

e1 =

[
1
0

]
, e2 =

1√
2

[
1
1

]
.

For an arbitrary signal x ∈ R2, we can compute the expansion coefficients

c1 , 〈x, e1〉
c2 , 〈x, e2〉 .

As in Example 2.1 above, we stack the expansion coefficients into a vector so that

c =

[
c1
c2

]
=

[
〈x, e1〉
〈x, e2〉

]
=

[
eT1
eT2

]
x =

[
1 0

1/
√

2 1/
√

2

]
x. (5)

Analogously to Example 2.1, we can define the analysis matrix

T ,

[
eT1
eT2

]
=

[
1 0

1/
√

2 1/
√

2

]

and rewrite (5) as
c = Tx.

Now, obviously, the vectors e1 and e2 are not orthonormal (or, equivalently, T is not unitary) so
that we cannot write x in the form (1). We could, however, try to find a decomposition of x of the
form

x = 〈x, e1〉 ẽ1 + 〈x, e2〉 ẽ2 (6)

with ẽ1, ẽ2 ∈ R2. That this is, indeed, possible is easily seen by rewriting (6) according to

x =
[
ẽ1 ẽ2

]
Tx (7)
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and choosing the vectors ẽ1 and ẽ2 to be given by the columns of T−1 according to

[
ẽ1 ẽ2

]
= T−1. (8)

Note that T is invertible as a consequence of e1 and e2 not being collinear. For the specific example
at hand we find

[
ẽ1 ẽ2

]
= T−1 =

[
1 0

−1
√

2

]

and therefore (see Figure 2)

ẽ1 =

[
1
−1

]
, ẽ2 =

[
0√
2

]
.

Note that (8) implies that T
[
ẽ1 ẽ2

]
= I2, which is equivalent to

[
eT1
eT2

] [
ẽ1 ẽ2

]
= I2.

More directly the two sets of vectors {e1, e2} and {ẽ1, ẽ2} satisfy a “biorthonormality” property
according to

〈ej , ẽk〉 =

{
1, j = k

0, else
, j, k = 1, 2.

We say that {e1, e2} and {ẽ1, ẽ2} are biorthonormal bases. Analogously to (3), we can now define
the synthesis matrix as follows:

T̃T ,
[
ẽ1 ẽ2

]
=

[
1 0

−1
√

2

]
.

Our observations can be summarized according to

x = 〈x, e1〉 ẽ1 + 〈x, e2〉 ẽ2
= T̃Tc = T̃TTx

=

[
1 0

−1
√

2

] [
1 0

1/
√

2 1/
√

2

]
x =

[
1 0
0 1

]
x. (9)

Comparing (9) to (4), we observe the following: To synthesize x from the expansion coefficients c
corresponding to the nonorthogonal set {e1, e2}, we need to use the synthesis matrix T̃T obtained
from the set {ẽ1, ẽ2}, which forms a biorthonormal pair with {e1, e2}. In Example 2.1 {e1, e2} is
an ONB and hence T̃ = T, or, equivalently, {e1, e2} forms a biorthonormal pair with itself.

As the vectors e1 and e2 are linearly independent, the 2× 2 analysis matrix T has full rank and is
hence invertible, i.e., there is a unique matrix T−1 that satisfies T−1T = I2. According to (7) this
means that for each analysis set {e1, e2} there is precisely one synthesis set {ẽ1, ẽ2} such that (6)
is satisfied for all x ∈ R2.

So far we considered nonredundant signal expansions where the number of expansion coefficients
is equal to the dimension of the Hilbert space. Often, however, redundancy in the expansion is
desirable.
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Example 2.3 (Overcomplete expansion in R2, [20, Ex. 3.1]). Consider the following three vectors
in R2 (see Figure 3):

g1 =

[
1
0

]
, g2 =

[
0
1

]
, g3 =

[
1
−1

]
.

Three vectors in a two-dimensional space are always linearly dependent. In particular, in this
example we have g3 = g1 − g2. Let us compute the expansion coefficients c corresponding to
{g1,g2,g3}:

c =



c1
c2
c3


 ,



〈x,g1〉
〈x,g2〉
〈x,g3〉


 =




gT
1

gT
2

gT
3


x =




1 0
0 1
1 −1


x. (10)

Following Examples 2.1 and 2.2, we define the analysis matrix

T ,




gT
1

gT
2

gT
3


 ,




1 0
0 1
1 −1




and rewrite (10) as
c = Tx.

Note that here, unlike in Examples 2.1 and 2.2, c is a redundant representation of x as we have
three expansion coefficients for a two-dimensional signal x.

We next ask if x can be represented as a linear combination of the form

x = 〈x,g1〉︸ ︷︷ ︸
c1

g̃1 + 〈x,g2〉︸ ︷︷ ︸
c2

g̃2 + 〈x,g3〉︸ ︷︷ ︸
c3

g̃3 (11)

with g̃1, g̃2, g̃3 ∈ R2? To answer this question (in the affirmative) we first note that the vectors
g1,g2 form an ONB for R2. We therefore know that the following is true:

x = 〈x,g1〉g1 + 〈x,g2〉g2. (12)

Setting
g̃1 = g1, g̃2 = g2, g̃3 = 0
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obviously yields a representation of the form (11). It turns out, however, that this representation
is not unique and that an alternative representation of the form (11) can be obtained as follows.
We start by adding zero to the right-hand side of (12):

x = 〈x,g1〉g1 + 〈x,g2〉g2 + 〈x,g1 − g2〉 (g1 − g1)︸ ︷︷ ︸
0

.

Rearranging terms in this expression, we obtain

x = 〈x,g1〉 2g1 + 〈x,g2〉 (g2 − g1)− 〈x,g1 − g2〉g1. (13)

We recognize that g1 − g2 = g3 and set

g̃1 = 2g1, g̃2 = g2 − g1, g̃3 = −g1. (14)

This allows us to rewrite (13) as

x = 〈x,g1〉 g̃1 + 〈x,g2〉 g̃2 + 〈x,g3〉 g̃3.

The redundant set of vectors {g1,g2,g3} is called a frame. The set {g̃1, g̃2, g̃3} in (14) is called a
dual frame to the frame {g1,g2,g3}. Obviously another dual frame is given by g̃1 = g1, g̃2 = g2,
and g̃3 = 0. In fact, there are infinitely many dual frames. To see this, we first define the synthesis
matrix corresponding to a dual frame {g̃1, g̃2, g̃3} as

T̃T ,
[
g̃1 g̃2 g̃3

]
. (15)

It then follows that we can write

x = 〈x,g1〉 g̃1 + 〈x,g2〉 g̃2 + 〈x,g3〉 g̃3

= T̃Tc = T̃TTx,

which implies that setting T̃T = [g̃1 g̃2 g̃3] to be a left-inverse of T yields a valid dual frame. Since
T is a 3×2 (“tall”) matrix, its left-inverse is not unique. In fact, T has infinitely many left-inverses
(two of them were found above). Every left-inverse of T leads to a dual frame according to (15).

Thanks to the redundancy of the frame {g1,g2,g3}, we obtain design freedom: In order to synthesize
the signal x from its expansion coefficients ck = 〈x,gk〉 , k = 1, 2, 3, in the frame {g1,g2,g3}, we
can choose between infinitely many dual frames {g̃1, g̃2, g̃3}. In practice the particular choice of
the dual frame is usually dictated by the requirements of the specific problem at hand. We shall
discuss this issue in detail in the context of sampling theory in Section 5.2.

3 Signal Expansions in Finite-Dimensional Hilbert Spaces

Motivated by the examples above, we now consider general signal expansions in finite-dimensional
Hilbert spaces. As in the previous section, we first review the concept of an ONB, we then consider
arbitrary (nonorthogonal) bases, and, finally, we discuss redundant vector sets — frames. While the
discussion in this section is confined to the finite-dimensional case, we develop the general (possibly
infinite-dimensional) case in Section 4.
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3.1 Orthonormal Bases

We start by reviewing the concept of an ONB.

Definition 3.1. The set of vectors {ek}Mk=1, ek ∈ CM , is called an ONB for CM if

1. span{ek}Mk=1 = {c1e1 + c2e2 + . . .+ cMeM | c1, c2, . . . , cM ∈ C} = CM

2.

〈ek, ej〉 =

{
1, k = j

0, k 6= j
k, j = 1, . . . ,M.

When {ek}Mk=1 is an ONB, thanks to the spanning property in Definition 3.1, every x ∈ CM can
be decomposed as

x =

M∑

k=1

ckek. (16)

The expansion coefficients {ck}Mk=1 in (16) can be found through the following calculation:

〈x, ej〉 =

〈
M∑

k=1

ckek, ej

〉
=

M∑

k=1

ck 〈ek, ej〉 = cj .

In summary, we have the decomposition

x =

M∑

k=1

〈x, ek〉 ek.

Just like in Example 2.1, in the previous section, we define the analysis matrix

T ,




eH1
...

eHM


 .

If we organize the inner products {〈x, ek〉}Mk=1 into the vector c, we have

c ,



〈x, e1〉

...
〈x, eM 〉


 = Tx =




eH1
...

eHM


x.

Thanks to the orthonormality of the vectors e1, e2, . . . , eM the matrix T is unitary, i.e., TH = T−1

and hence

TTH =




eH1
...

eHM



[
e1 . . . eM

]
=



〈e1, e1〉 · · · 〈eM , e1〉

...
. . .

...
〈e1, eM 〉 · · · 〈eM , eM 〉


 = IM = THT.

Thus, if we multiply the vector c by TH, we synthesize x according to

THc = THTx =

M∑

k=1

〈x, ek〉 ek = IMx = x. (17)
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We shall therefore call the matrix TH the synthesis matrix, corresponding to the analysis matrix
T. In the ONB case considered here the synthesis matrix is simply the Hermitian adjoint of the
analysis matrix.

3.2 General Bases

We next relax the orthonormality property, i.e., the second condition in Definition 3.1, and consider
general bases.

Definition 3.2. The set of vectors {ek}Mk=1, ek ∈ CM , is a basis for CM if

1. span{ek}Mk=1 = {c1e1 + c2e2 + . . .+ cMeM | c1, c2, . . . , cM ∈ C} = CM

2. {ek}Mk=1 is a linearly independent set, i.e., if
∑M

k=1 ckek = 0 for some scalar coefficients
{ck}Mk=1, then necessarily ck = 0 for all k = 1, . . . ,M.

Now consider a signal x ∈ CM and compute the expansion coefficients

ck , 〈x, ek〉 , k = 1, . . . ,M. (18)

Again, it is convenient to introduce the analysis matrix

T ,




eH1
...

eHM




and to stack the coefficients {ck}Mk=1 in the vector c. Then (18) can be written as

c = Tx.

Next, let us ask how we can find a set of vectors {ẽ1, . . . , ẽM}, ẽk ∈ CM , k = 1, . . . ,M, that is dual
to the set {e1, . . . , eM} in the sense that

x =

M∑

k=1

ckẽk =

M∑

k=1

〈x, ek〉 ẽk (19)

for all x ∈ CM . If we introduce the synthesis matrix

T̃H , [ẽ1 · · · ẽM ],

we can rewrite (19) in vector-matrix notation as follows

x = T̃Hc = T̃HTx.

This shows that finding vectors ẽ1, . . . , ẽM that satisfy (19) is equivalent to finding the inverse of
the analysis matrix T and setting T̃H = T−1. Thanks to the linear independence of the vectors
{ek}Mk=1, the matrix T has full rank and is, therefore, invertible.

Summarizing our findings, we conclude that in the case of a basis {ek}Mk=1, the analysis matrix and
the synthesis matrix are inverses of each other, i.e., T̃HT = TT̃H = IM . Recall that in the case of
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an ONB the analysis matrix T is unitary and hence its inverse is simply given by TH [see (17)], so
that in this case T̃ = T.

Next, note that TT̃H = IM is equivalent to



eH1
...

eHM



[
ẽ1 . . . ẽM

]
=



〈ẽ1, e1〉 · · · 〈ẽM , e1〉

...
. . .

...
〈ẽ1, eM 〉 · · · 〈ẽM , eM 〉


 = IM

or equivalently

〈ek, ẽj〉 =

{
1, k = j

0, else
, k, j = 1, . . . ,M. (20)

The sets {ek}Mk=1 and {ẽk}Mk=1 are biorthonormal bases. ONBs are biorthonormal to themselves in
this terminology, as already noted in Example 2.2. We emphasize that it is the fact that T and
T̃H are square and full-rank that allows us to conclude that T̃HT = IM implies TT̃H = IM and
hence to conclude that (20) holds. We shall see below that for redundant expansions T is a tall
matrix and T̃HT 6= TT̃H (T̃HT and TT̃H have different dimensions) so that dual frames will not
be biorthonormal.

As T is a square matrix and of full rank, its inverse is unique, which means that for a given analysis
set {ek}Mk=1, the synthesis set {ẽk}Mk=1 is unique. Alternatively, for a given synthesis set {ẽk}Mk=1,
there is a unique analysis set {ek}Mk=1. This uniqueness property is not always desirable. For
example, one may want to impose certain structural properties on the synthesis set {ẽk}Mk=1 in
which case having freedom in choosing the synthesis set as in Example 2.2 is helpful.

An important property of ONBs is that they are norm-preserving: The norm of the coefficient
vector c is equal to the norm of the signal x. This can easily be seen by noting that

‖c‖2 = cHc = xHTHTx = xHIMx = ‖x‖2, (21)

where we used (17). Biorthonormal bases are not norm-preserving, in general. Rather, the equality
in (21) is relaxed to a double-inequality, by application of the Rayleigh-Ritz theorem [22, Sec.
9.7.2.2] according to

λmin

(
THT

)
‖x‖2 ≤ ‖c‖2 = xHTHTx ≤ λmax

(
THT

)
‖x‖2. (22)

3.3 Redundant Signal Expansions

The signal expansions we considered so far are non-redundant in the sense that the number of
expansion coefficients equals the dimension of the Hilbert space. Such signal expansions have a
number of disadvantages. First, corruption or loss of expansion coefficients can result in signifi-
cant reconstruction errors. Second, the reconstruction process is very rigid: As we have seen in
Section 3.2, for each set of analysis vectors, there is a unique set of synthesis vectors. In practical
applications it is often desirable to impose additional constraints on the reconstruction functions,
such as smoothness properties or structural properties that allow for computationally efficient re-
construction.

Redundant expansions allow to overcome many of these problems as they offer design freedom and
robustness to corruption or loss of expansion coefficients. We already saw in Example 2.3 that in
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the case of redundant expansions, for a given set of analysis vectors the set of synthesis vectors that
allows perfect recovery of a signal from its expansion coefficients is not unique; in fact, there are
infinitely many sets of synthesis vectors, in general. This results in design freedom and provides
robustness. Suppose that the expansion coefficient c3 = 〈x,g3〉 in Example 2.3 is corrupted or even
completely lost. We can still reconstruct x exactly from (12).

Now, let us turn to developing the general theory of redundant signal expansions in finite-dimensional
Hilbert spaces. Consider a set of N vectors {g1, . . . ,gN}, gk ∈ CM , k = 1, . . . , N, with N ≥ M .
Clearly, when N is strictly greater than M , the vectors g1, . . . ,gN must be linearly dependent.
Next, consider a signal x ∈ CM and compute the expansion coefficients

ck = 〈x,gk〉 , k = 1, . . . , N. (23)

Just as before, it is convenient to introduce the analysis matrix

T ,




gH
1
...

gH
N


 (24)

and to stack the coefficients {ck}Nk=1 in the vector c. Then (23) can be written as

c = Tx. (25)

Note that c ∈ CN and x ∈ CM . Differently from ONBs and biorthonormal bases considered
in Sections 3.1 and 3.2, respectively, in the case of redundant expansions, the signal x and the
expansion coefficient vector c will, in general, belong to different Hilbert spaces.

The question now is: How can we find a set of vectors {g̃1, . . . , g̃N}, g̃k ∈ CM , k = 1, . . . , N, such
that

x =

N∑

k=1

ckg̃k =

N∑

k=1

〈x,gk〉 g̃k (26)

for all x ∈ CM? If we introduce the synthesis matrix

T̃H , [g̃1 · · · g̃N ],

we can rewrite (26) in vector-matrix notation as follows

x = T̃Hc = T̃HTx. (27)

Finding vectors g̃1, . . . , g̃N that satisfy (26) for all x ∈ CM is therefore equivalent to finding a
left-inverse T̃H of T, i.e.,

T̃HT = IM .

First note that T is left-invertible if and only if CM = span{gk}Nk=1, i.e., if and only if the set of
vectors {gk}Nk=1 spans CM . Next observe that when N > M , the N ×M matrix T is a “tall”
matrix, and therefore its left-inverse is, in general, not unique. In fact, there are infinitely many
left-inverses. The following theorem [23, Ch. 2, Th. 1] provides a convenient parametrization of all
these left-inverses.
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Theorem 3.3. Let A ∈ CN×M , N ≥ M . Assume that rank(A) = M . Then A† , (AHA)−1AH

is a left-inverse of A, i.e., A†A = IM . Moreover, the general solution L ∈ CM×N of the equation
LA = IM is given by

L = A† + M(IN −AA†), (28)

where M ∈ CM×N is an arbitrary matrix.

Proof. Since rank(A) = M , the matrix AHA is invertible and hence A† is well defined. Now, let
us verify that A† is, indeed, a left-inverse of A:

A†A = (AHA)−1AHA = IM . (29)

The matrix A† is called the Moore-Penrose inverse of A.

Next, we show that every matrix L of the form (28) is a valid left-inverse of A:

LA =
(
A† + M(IN −AA†)

)
A

= A†A︸ ︷︷ ︸
IM

+MA−MA A†A︸ ︷︷ ︸
IM

= IM + MA−MA = IM ,

where we used (29) twice.

Finally, assume that L is a valid left-inverse of A, i.e., L is a solution of the equation LA = IM .
We show that L can be written in the form (28). Multiplying the equation LA = IM by A† from
the right, we have

LAA† = A†.

Adding L to both sides of this equation and rearranging terms yields

L = A† + L− LAA† = A† + L(IN −AA†),

which shows that L can be written in the form (28) (with M = L), as required.

We conclude that for each redundant set of vectors {g1, . . . ,gN} that spans CM , there are infinitely
many dual sets {g̃1, . . . , g̃N} such that the decomposition (26) holds for all x ∈ CM . These dual
sets are obtained by identifying {g̃1, . . . , g̃N} with the columns of L according to

[g̃1 · · · g̃N ] = L,

where L can be written as follows

L = T† + M(IN −TT†)

and M ∈ CM×N is an arbitrary matrix.

The dual set {g̃1, . . . , g̃N} corresponding to the Moore-Penrose inverse L = T† of the matrix T,
i.e.,

[g̃1 · · · g̃N ] = T† = (THT)−1TH

is called the canonical dual of {g1, . . . ,gN}. Using (24), we see that in this case

g̃k = (THT)−1gk, k = 1, . . . , N. (30)
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Note that unlike in the case of a basis, the equation T̃HT = IM does not imply that the sets {g̃k}Nk=1

and {gk}Nk=1 are biorthonormal. This is because the matrix T is not a square matrix, and thus,
T̃HT 6= TT̃H (T̃HT and TT̃H have different dimensions).

Similar to biorthonormal bases, redundant sets of vectors are, in general, not norm-preserving.
Indeed, from (25) we see that

‖c‖2 = xHTHTx

and thus, by the Rayleigh-Ritz theorem [22, Sec. 9.7.2.2], we have

λmin

(
THT

)
‖x‖2 ≤ ‖c‖2 ≤ λmax

(
THT

)
‖x‖2 (31)

as in the case of biorthonormal bases.

We already saw some of the basic issues that a theory of orthonormal, biorthonormal, and redundant
signal expansions should address. It should account for the signals and the expansion coefficients
belonging, potentially, to different Hilbert spaces; it should account for the fact that for a given
analysis set, the synthesis set is not unique in the redundant case, it should prescribe how synthesis
vectors can be obtained from the analysis vectors. Finally, it should apply not only to finite-
dimensional Hilbert spaces, as considered so far, but also to infinite-dimensional Hilbert spaces.
We now proceed to develop this general theory, known as the theory of frames.

4 Frames for General Hilbert Spaces

Let {gk}k∈K (K is a countable set) be a set of elements taken from the Hilbert space H. Note that
this set need not be orthogonal.

In developing a general theory of signal expansions in Hilbert spaces, as outlined at the end of
the previous section, we start by noting that the central quantity in Section 3 was the analysis
matrix T associated to the (possibly nonorthogonal or redundant) set of vectors {g1, . . . ,gN}.
Now matrices are nothing but linear operators in finite-dimensional Hilbert spaces. In formulating
frame theory for general (possibly infinite-dimensional) Hilbert spaces, it is therefore sensible to
define the analysis operator T that assigns to each signal x ∈ H the sequence of inner products
Tx = {〈x, gk〉}k∈K. Throughout this section, we assume that {gk}k∈K is a Bessel sequence, i.e.,∑

k∈K |〈x, gk〉|2 <∞ for all x ∈ H.

Definition 4.1. The linear operator T is defined as the operator that maps the Hilbert space H
into the space l2 of square-summable complex sequences1, T : H → l2, by assigning to each signal
x ∈ H the sequence of inner products 〈x, gk〉 according to

T : x→ {〈x, gk〉}k∈K.

Note that ‖Tx‖2 =
∑

k∈K |〈x, gk〉|2, i.e., the energy ‖Tx‖2 of Tx can be expressed as

‖Tx‖2 =
∑

k∈K
|〈x, gk〉|2 . (32)

We shall next formulate properties that the set {gk}k∈K and hence the operator T should satisfy if
we have signal expansions in mind:

1The fact that the range space of T is contained in l2 is a consequence of {gk}k∈K being a Bessel sequence.
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1. The signal x can be perfectly reconstructed from the coefficients {〈x, gk〉}k∈K. This means
that we want 〈x, gk〉 = 〈y, gk〉, for all k ∈ K, (i.e., Tx = Ty) to imply that x = y, for all
x, y ∈ H. In other words, the operator T has to be left-invertible, which means that T is
invertible on its range space R(T) = {y ∈ l2 : y = Tx, x ∈ H}.
This requirement will clearly be satisfied if we demand that there exist a constant A > 0 such
that for all x, y ∈ H we have

A‖x− y‖2 ≤ ‖Tx− Ty‖2.
Setting z = x− y and using the linearity of T, we see that this condition is equivalent to

A‖z‖2 ≤ ‖Tz‖2 (33)

for all z ∈ H with A > 0.

2. The energy in the sequence of expansion coefficients Tx = {〈x, gk〉}k∈K should be related to
the energy in the signal x. For example, we saw in (21) that if {ek}Mk=1 is an ONB for CM ,
then

‖Tx‖2 =
M∑

k=1

|〈x, ek〉|2 = ‖x‖2, for all x ∈ CM . (34)

This property is a consequence of the unitarity of T = T and it is clear that it will not hold
for general sets {gk}k∈K (see the discussion around (22) and (31)). Instead, we will relax (34)
to demand that for all x ∈ H there exist a finite constant B such that2

‖Tx‖2 =
∑

k∈K
|〈x, gk〉|2 ≤ B‖x‖2. (35)

Together with (33) this “sandwiches” the quantity ‖Tx‖2 according to

A‖x‖2 ≤ ‖Tx‖2 ≤ B‖x‖2.

We are now ready to formally define a frame for the Hilbert space H.

Definition 4.2. A set of elements {gk}k∈K, gk ∈ H, k ∈ K, is called a frame for the Hilbert space
H if

A‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 ≤ B‖x‖2, for all x ∈ H, (36)

with A,B ∈ R and 0 < A ≤ B <∞. Valid constants A and B are called frame bounds. The largest
valid constant A and the smallest valid constant B are called the (tightest possible) frame bounds.

Let us next consider some simple examples of frames.

Example 4.3 ([21]). Let {ek}∞k=1 be an ONB for an infinite-dimensional Hilbert space H. By
repeating each element in {ek}∞k=1 once, we obtain the redundant set

{gk}∞k=1 = {e1, e1, e2, e2, . . .}.
2Note that if (35) is satisfied with B <∞, then {gk}k∈K is a Bessel sequence.
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To see that this set is a frame for H, we note that because {ek}∞k=1 is an ONB, for all x ∈ H, we
have

∞∑

k=1

|〈x, ek〉|2 = ‖x‖2

and therefore
∞∑

k=1

|〈x, gk〉|2 =

∞∑

k=1

|〈x, ek〉|2 +

∞∑

k=1

|〈x, ek〉|2 = 2‖x‖2.

This verifies the frame condition (36) and shows that the frame bounds are given by A = B = 2.

Example 4.4 ([21]). Starting from the ONB {ek}∞k=1, we can construct another redundant set as
follows

{gk}∞k=1 =

{
e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . .

}
.

To see that the set {gk}∞k=1 is a frame for H, take an arbitrary x ∈ H and note that

∞∑

k=1

|〈x, gk〉|2 =

∞∑

k=1

k

∣∣∣∣
〈
x,

1√
k
ek

〉∣∣∣∣
2

=

∞∑

k=1

k
1

k
|〈x, ek〉|2 =

∞∑

k=1

|〈x, ek〉|2 = ‖x‖2.

We conclude that {gk}∞k=1 is a frame with the frame bounds A = B = 1.

From (32) it follows that an equivalent formulation of (36) is

A‖x‖2 ≤ ‖Tx‖2 ≤ B‖x‖2, for all x ∈ H.

This means that the energy in the coefficient sequence Tx is bounded above and below by bounds
that are proportional to the signal energy. The existence of a lower frame bound A > 0 guarantees
that the linear operator T is left-invertible, i.e., our first requirement above is satisfied. Besides
that it also guarantees completeness of the set {gk}k∈K for H, as we shall see next. To this end, we
first recall the following definition:

Definition 4.5. A set of elements {gk}k∈K, gk ∈ H, k ∈ K, is complete for the Hilbert space H
if 〈x, gk〉 = 0 for all k ∈ K and with x ∈ H implies x = 0, i.e., the only element in H that is
orthogonal to all gk, is x = 0.

To see that the frame {gk}k∈K is complete for H, take an arbitrary signal x ∈ H and assume
that 〈x, gk〉 = 0 for all k ∈ K. Due to the existence of a lower frame bound A > 0 we have

A‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 = 0,

which implies ‖x‖2 = 0 and hence x = 0.

Finally, note that the existence of an upper frame bound B < ∞ guarantees that T is a bounded
linear operator3 (see [1, Def. 2.7-1]), and, therefore (see [1, Th. 2.7-9]), continuous4 (see [1, Sec.
2.7]).

3Let H and H′ be Hilbert spaces and A : H → H′ a linear operator. The operator A is said to be bounded if there
exists a finite number c such that for all x ∈ H, ‖Ax‖ ≤ c‖x‖.

4Let H and H′ be Hilbert spaces and A : H → H′ a linear operator. The operator A is said to be continuous at
a point x0 ∈ H if for every ε > 0 there is a δ > 0 such that for all x ∈ H satisfying ‖x − x0‖ < δ it follows that
‖Ax− Ax0‖ < ε. The operator A is said to be continuous on H, if it is continuous at every point x0 ∈ H.
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Recall that we would like to find a general method to reconstruct a signal x ∈ H from its expansion
coefficients {〈x, gk〉}k∈K. In Section 3.3 we saw that in the finite-dimensional case, this can be
accomplished according to

x =
N∑

k=1

〈x,gk〉 g̃k.

Here {g̃1, . . . , g̃N} can be chosen to be the canonical dual set to the set {g1, . . . ,gN} and can be
computed as follows: g̃k = (THT)−1gk, k = 1, . . . , N . We already know that T is the generalization
of T to the infinite-dimensional setting. Which operator will then correspond to TH? To answer
this question we start with a definition.

Definition 4.6. The linear operator T× is defined as

T× : l2 → H
T× : {ck}k∈K →

∑

k∈K
ckgk.

Next, we recall the definition of the adjoint of an operator.

Definition 4.7. Let A : H → H′ be a bounded linear operator between the Hilbert spaces H and
H′. The unique bounded linear operator A∗ : H′ → H that satisfies

〈Ax, y〉 = 〈x,A∗y〉 (37)

for all x ∈ H and all y ∈ H′ is called the adjoint of A.

Note that the concept of the adjoint of an operator directly generalizes that of the Hermitian
transpose of a matrix: if A ∈ CN×M , x ∈ CM , y ∈ CN , then

〈Ax,y〉 = yHAx = (AHy)Hx =
〈
x,AHy

〉
,

which, comparing to (37), shows that AH corresponds to A∗.

We shall next show that the operator T× defined above is nothing but the adjoint T∗ of the
operator T. To see this consider an arbitrary sequence {ck}k∈K ∈ l2 and an arbitrary signal x ∈ H.
We have to prove that

〈Tx, {ck}k∈K〉 =
〈
x,T×{ck}k∈K

〉
.

This can be established by noting that

〈Tx, {ck}k∈K〉 =
∑

k∈K
〈x, gk〉 c∗k

〈
x,T×{ck}k∈K

〉
=

〈
x,
∑

k∈K
ckgk

〉
=
∑

k∈K
c∗k 〈x, gk〉 .

We therefore showed that the adjoint operator of T is T×, i.e.,

T× = T∗.

In what follows, we shall always write T∗ instead of T×. As pointed out above the concept of
the adjoint of an operator generalizes the concept of the Hermitian transpose of a matrix to the
infinite-dimensional case. Thus, T∗ is the generalization of TH to the infinite-dimensional setting.
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4.1 The Frame Operator

Let us return to the discussion we had immediately before Definition 4.6. We saw that in the finite-
dimensional case, the canonical dual set {g̃1, . . . , g̃N} to the set {g1, . . . ,gN} can be computed as
follows: g̃k = (THT)−1gk, k = 1, . . . , N . We know that T is the generalization of T to the infinite-
dimensional case and we have just seen that T∗ is the generalization of TH. It is now obvious that
the operator T∗T must correspond to THT. The operator T∗T is of central importance in frame
theory.

Definition 4.8. Let {gk}k∈K be a frame for the Hilbert space H. The operator S : H → H defined
as

S = T∗T, (38)

Sx =
∑

k∈K
〈x, gk〉 gk

is called the frame operator.

We note that ∑

k∈K
|〈x, gk〉|2 = ‖Tx‖2 = 〈Tx,Tx〉 = 〈T∗Tx, x〉 = 〈Sx, x〉 . (39)

We are now able to formulate the frame condition in terms of the frame operator S by simply noting
that (36) can be written as

A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2. (40)

We shall next discuss the properties of S.

Theorem 4.9. The frame operator S satisfies the properties:

1. S is linear and bounded;

2. S is self-adjoint, i.e., S∗ = S;

3. S is positive definite, i.e., 〈Sx, x〉 > 0 for all x ∈ H;

4. S has a unique self-adjoint positive definite square root (denoted as S1/2).

Proof. 1. Linearity and boundedness of S follow from the fact that S is obtained by cascading a
bounded linear operator and its adjoint (see (38)).

2. To see that S is self-adjoint simply note that

S∗ = (T∗T)∗ = T∗T = S.

3. To see that S is positive definite note that, with (40)

〈Sx, x〉 ≥ A‖x‖2 > 0

for all x ∈ H, x 6= 0.
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4. Recall the following basic fact from functional analysis [1, Th. 9.4-2].

Lemma 4.10. Every self-adjoint positive definite bounded operator A : H → H has a unique
self-adjoint positive definite square root, i.e., there exists a unique self-adjoint positive-definite
operator B such that A = BB. The operator B commutes with the operator A, i.e., BA = AB.

Property 4 now follows directly form Property 2, Property 3, and Lemma 4.10.

We next show that the tightest possible frame bounds A and B are given by the smallest and the
largest spectral value [1, Def. 7.2-1] of the frame operator S, respectively.

Theorem 4.11. Let A and B be the tightest possible frame bounds for a frame with frame operator
S. Then

A = λmin and B = λmax, (41)

where λmin and λmax denote the smallest and the largest spectral value of S, respectively.

Proof. By standard results on the spectrum of self-adjoint operators [1, Th. 9.2-1, Th. 9.2-3, Th.
9.2-4], we have

λmin = inf
x∈H

〈Sx, x〉
‖x‖2 and λmax = sup

x∈H

〈Sx, x〉
‖x‖2 . (42)

This means that λmin and λmax are, respectively, the largest and the smallest constants such that

λmin‖x‖2 ≤ 〈Sx, x〉 ≤ λmax‖x‖2 (43)

is satisfied for every x ∈ H. According to (40) this implies that λmin and λmax are the tightest
possible frame bounds.

It is instructive to compare (43) to (31). Remember that S = T∗T corresponds to the matrix THT in
the finite-dimensional case considered in Section 3.3. Thus, ‖c‖2 = xHTHTx = 〈Sx,x〉, which upon
insertion into (31), shows that (43) is simply a generalization of (31) to the infinite-dimensional
case.

4.2 The Canonical Dual Frame

Recall that in the finite-dimensional case considered in Section 3.3, the canonical dual frame {g̃k}Nk=1

of the frame {gk}Nk=1 can be used to reconstruct the signal x from the expansion coefficients
{〈x,gk〉}Nk=1 according to

x =
N∑

k=1

〈x,gk〉 g̃k.

In (30) we saw that the canonical dual frame can be computed as follows:

g̃k = (THT)−1gk, k = 1, . . . , N. (44)

We already pointed out that the frame operator S = T∗T is represented by the matrix THT in the
finite-dimensional case. The matrix (THT)−1 therefore corresponds to the operator S−1, which will
be studied next.
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From (41) it follows that λmin, the smallest spectral value of S, satisfies λmin > 0 if {gk}k∈K is a
frame. This implies that zero is a regular value [1, Def. 7.2-1] of S and hence S is invertible on
H, i.e., there exists a unique operator S−1 such that SS−1 = S−1S = IH. Next, we summarize the
properties of S−1.

Theorem 4.12. The following properties hold:

1. S−1 is self-adjoint, i.e.,
(
S−1

)∗
= S−1;

2. S−1 satisfies
1

B
= inf

x∈H

〈
S−1x, x

〉

‖x‖2 and
1

A
= sup

x∈H

〈
S−1x, x

〉

‖x‖2 , (45)

where A and B are the tightest possible frame bounds of S;

3. S−1 is positive definite.

Proof. 1. To prove that S−1 is self-adjoint we write

(SS−1)∗ = (S−1)∗S∗ = IH.

Since S is self-adjoint, i.e., S = S∗, we conclude that

(S−1)∗S = IH.

Multiplying by S−1 from the right, we finally obtain

(S−1)∗ = S−1.

2. To prove the first equation in (45) we write

B = sup
x∈H

〈Sx, x〉
‖x‖2 = sup

y∈H

〈
SS1/2S−1y,S1/2S−1y

〉
〈
S1/2S−1y,S1/2S−1y

〉

= sup
y∈H

〈
S−1S1/2SS1/2S−1y, y

〉
〈
S−1S1/2S1/2S−1y, y

〉 = sup
y∈H

〈y, y〉
〈S−1y, y〉 (46)

where the first equality follows from (41) and (42); in the second equality we used the fact that
the operator S1/2S−1 is one-to-one on H and changed variables according to x = S1/2S−1y;
in the third equality we used the fact that S1/2 and S−1 are self-adjoint, and in the fourth
equality we used S = S1/2S1/2. The first equation in (45) is now obtained by noting that (46)
implies

1

B
= 1

/(
sup
y∈H

〈y, y〉
〈S−1y, y〉

)
= inf

y∈H

〈
S−1y, y

〉

〈y, y〉 .

The second equation in (45) is proved analogously.

3. Positive-definiteness of S−1 follows from the first equation in (45) and the fact that B < ∞
so that 1/B > 0.
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We are now ready to generalize (44) and state the main result on canonical dual frames in the case
of general (possibly infinite-dimensional) Hilbert spaces.

Theorem 4.13. Let {gk}k∈K be a frame for the Hilbert space H with the frame bounds A and B,
and let S be the corresponding frame operator. Then, the set {g̃k}k∈K given by

g̃k = S−1gk, k ∈ K, (47)

is a frame for H with the frame bounds Ã = 1/B and B̃ = 1/A.

The analysis operator associated to {g̃k}k∈K defined as

T̃ : H → l2

T̃ : x→ {〈x, g̃k〉}k∈K

satisfies
T̃ = TS−1 = T (T∗T)−1 . (48)

Proof. Recall that S−1 is self-adjoint. Hence, we have 〈x, g̃k〉 =
〈
x, S−1gk

〉
=
〈
S−1x, gk

〉
for all

x ∈ H. Thus, using (39), we obtain

∑

k∈K
|〈x, g̃k〉|2 =

∑

k∈K

∣∣〈S−1x, gk
〉∣∣2

=
〈
S(S−1x),S−1x

〉
=
〈
x,S−1x

〉
=
〈
S−1x, x

〉
.

Therefore, we conclude from (45) that

1

B
‖x‖2 ≤

∑

k∈K
|〈x, g̃k〉|2 ≤

1

A
‖x‖2,

i.e., the set {g̃k}k∈K constitutes a frame for H with frame bounds Ã = 1/B and B̃ = 1/A; moreover,
it follows from (45) that Ã = 1/B and B̃ = 1/A are the tightest possible frame bounds. It remains
to show that T̃ = TS−1:

T̃x = {〈x, g̃k〉}k∈K =
{〈
x,S−1gk

〉}
k∈K =

{〈
S−1x, gk

〉}
k∈K = TS−1x.

We call {g̃k}k∈K the canonical dual frame associated to the frame {gk}k∈K. It is convenient to
introduce the canonical dual frame operator :

Definition 4.14. The frame operator associated to the canonical dual frame,

S̃ = T̃∗T̃, S̃x =
∑

k∈K
〈x, g̃k〉 g̃k (49)

is called the canonical dual frame operator.

Theorem 4.15. The canonical dual frame operator S̃ satisfies S̃ = S−1.
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Proof. For every x ∈ H, we have

S̃x =
∑

k∈K
〈x, g̃k〉 g̃k =

∑

k∈K

〈
x,S−1gk

〉
S−1gk

= S−1
∑

k∈K

〈
S−1x, gk

〉
gk = S−1SS−1x = S−1x,

where in the first equality we used (49), in the second we used (47), in the third we made use of
the fact that S−1 is self-adjoint, and in the fourth we used the definition of S.

Note that canonical duality is a reciprocity relation. If the frame {g̃k}k∈K is the canonical dual of
the frame {gk}k∈K, then {gk}k∈K is the canonical dual of the frame {g̃k}k∈K. This can be seen by
noting that

S̃−1g̃k = (S−1)−1S−1gk = SS−1gk = gk.

4.3 Signal Expansions

The following theorem can be considered as one of the central results in frame theory. It states
that every signal x ∈ H can be expanded into a frame. The expansion coefficients can be chosen
as the inner products of x with the canonical dual frame elements.

Theorem 4.16. Let {gk}k∈K and {g̃k}k∈K be canonical dual frames for the Hilbert space H. Every
signal x ∈ H can be decomposed as follows

x = T∗T̃x =
∑

k∈K
〈x, g̃k〉 gk

x = T̃∗Tx =
∑

k∈K
〈x, gk〉 g̃k. (50)

Note that, equivalently, we have
T∗T̃ = T̃∗T = IH.

Proof. We have

T∗T̃x =
∑

k∈K
〈x, g̃k〉 gk =

∑

k∈K

〈
x, S−1gk

〉
gk

=
∑

k∈K

〈
S−1x, gk

〉
gk = SS−1x = x.

This proves that T∗T̃ = IH. The proof of T̃∗T = IH is similar.

Note that (50) corresponds to the decomposition (26) we found in the finite-dimensional case.

It is now natural to ask whether reconstruction of x from the coefficients 〈x, gk〉 , k ∈ K, according
to (50) is the only way of recovering x from 〈x, gk〉 , k ∈ K. Recall that we showed in the finite-
dimensional case (see Section 3.3) that for each complete and redundant set of vectors {g1, . . . ,gN},
there are infinitely many dual sets {g̃1, . . . , g̃N} that can be used to reconstruct a signal x from the
coefficients 〈x,gk〉 , k = 1, . . . , N, according to (26). These dual sets are obtained by identifying
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{g̃1, . . . , g̃N} with the columns of L, where L is a left-inverse of the analysis matrix T. In the
infinite-dimensional case the question of finding all dual frames for a given frame boils down to
finding, for a given analysis operator T, all linear operators L that satisfy

LTx = x

for all x ∈ H. In other words, we want to identify all left-inverses L of the analysis operator T.
The answer to this question is the infinite-dimensional version of Theorem 3.3 that we state here
without proof.

Theorem 4.17. Let A : H → l2 be a bounded linear operator. Assume that A∗A : H → H is
invertible on H. Then, the operator A† : l2 → H defined as A† , (A∗A)−1A∗ is a left-inverse of
A, i.e., A†A = IH, where IH is the identity operator on H. Moreover, the general solution L of the
equation LA = IH is given by

L = A† + M(Il2 − AA†)

where M : l2 → H is an arbitrary bounded linear operator and Il2 is the identity operator on l2.

Applying this theorem to the operator T we see that all left-inverses of T can be written as

L = T† + M(Il2 − TT†) (51)

where M : l2 → H is an arbitrary bounded linear operator and

T† = (T∗T)−1T∗.

Now, using (48), we obtain the following important identity:

T† = (T∗T)−1T∗ = S−1T∗ = T̃∗.

This shows that reconstruction according to (50), i.e., by applying the operator T̃∗ to the coefficient
sequence Tx = {〈x, gk〉}k∈K is nothing but applying the infinite-dimensional analog of the Moore-
Penrose inverse T† = (THT)−1TH. As already noted in the finite-dimensional case the existence of
infinitely many left-inverses of the operator T provides us with freedom in designing dual frames.

We close this discussion with a geometric interpretation of the parametrization (51). First observe
the following.

Theorem 4.18. The operator
P : l2 → R(T) ⊆ l2

defined as
P = TS−1T∗

satisfies the following properties:

1. P is the identity operator Il2 on R(T).

2. P is the zero operator on R(T)⊥, where R(T)⊥ denotes the orthogonal complement of the
space R(T).

In other words, P is the orthogonal projection operator onto R(T) = {{ck}k∈K | {ck}k∈K = Tx, x ∈
H}, the range space of the operator T.
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Proof. 1. Take a sequence {ck}k∈K ∈ R(T) and note that it can be written as {ck}k∈K = Tx,
where x ∈ H. Then, we have

P{ck}k∈K = TS−1T∗Tx = TS−1Sx = TIHx = Tx = {ck}k∈K.

This proves that P is the identity operator on R(T).

2. Next, take a sequence {ck}k∈K ∈ R(T)⊥. As the orthogonal complement of the range space
of an operator is the null space of its adjoint, we have T∗{ck}k∈K = 0 and therefore

P{ck}k∈K = TS−1T∗{ck}k∈K = 0.

This proves that P is the zero operator on R(T)⊥.

Now using that TT† = TS−1T∗ = P and T† = S−1T∗ = S−1SS−1T∗ = S−1T∗TS−1T∗ = T̃∗P, we can
rewrite (51) as follows

L = T̃∗P + M(Il2 − P). (52)

Next, we show that (Il2 − P) : l2 → l2 is the orthogonal projection onto R(T)⊥. Indeed, we can
directly verify the following: For every {ck}k∈K ∈ R(T)⊥, we have (Il2 −P){ck}k∈K = Il2{ck}k∈K−
0 = {ck}k∈K, i.e., Il2−P is the identity operator on R(T)⊥; for every {ck}k∈K ∈ (R(T)⊥)⊥ = R(T),
we have (Il2−P){ck}k∈K = Il2{ck}k∈K−{ck}k∈K = 0, i.e., Il2−P is the zero operator on (R(T)⊥)⊥.

We are now ready to re-interpret (52) as follows. Every left-inverse L of T acts as T̃∗ (the synthesis
operator of the canonical dual frame) on the range space of the analysis operator T, and can act in
an arbitrary linear and bounded fashion on the orthogonal complement of the range space of the
analysis operator T.

4.4 Tight Frames

The frames considered in Examples 4.3 and 4.4 above have an interesting property: In both cases
the tightest possible frame bounds A and B are equal. Frames with this property are called tight
frames.

Definition 4.19. A frame {gk}k∈K with tightest possible frame bounds A = B is called a tight
frame.

Tight frames are of significant practical interest because of the following central fact.

Theorem 4.20. Let {gk}k∈K be a frame for the Hilbert space H. The frame {gk}k∈K is tight with
frame bound A if and only if its corresponding frame operator satisfies S = AIH, or equivalently, if

x =
1

A

∑

k∈K
〈x, gk〉 gk (53)

for all x ∈ H.
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Proof. First observe that S = AIH is equivalent to Sx = AIHx = Ax for all x ∈ H, which, in turn,
is equivalent to (53) by definition of the frame operator.

To prove that tightness of {gk}k∈K implies S = AIH, note that by Definition 4.19, using (40) we
can write

〈Sx, x〉 = A 〈x, x〉 , for all x ∈ H.
Therefore

〈(S−AIH)x, x〉 = 0, for all x ∈ H,
which implies S = AIH.

To prove that S = AIH implies tightness of {gk}k∈K, we take the inner product with x on both
sides of (53) to obtain

〈x, x〉 =
1

A

∑

k∈K
〈x, gk〉 〈gk, x〉 .

This is equivalent to

A‖x‖2 =
∑

k∈K
|〈x, gk〉|2 ,

which shows that {gk}k∈K is a tight frame for H with frame bound equal to A.

The practical importance of tight frames lies in the fact that they make the computation of the
canonical dual frame, which in the general case requires inversion of an operator and application
of this inverse to all frame elements, particularly simple. Specifically, we have:

g̃k = S−1gk =
1

A
IHgk =

1

A
gk.

A well-known example of a tight frame for R2 is the following:

Example 4.21 (The Mercedes-Benz frame [20]). The Mercedes-Benz frame (see Figure 4) is given
by the following three vectors in R2:

g1 =

[
0
1

]
, g2 =

[
−
√

3/2
−1/2

]
, g3 =

[√
3/2
−1/2

]
. (54)

To see that this frame is indeed tight, note that its analysis operator T is given by the matrix

T =




0 1

−
√

3/2 −1/2√
3/2 −1/2


 .

The adjoint T∗ of the analysis operator is given by the matrix

TH =

[
0 −

√
3/2

√
3/2

1 −1/2 −1/2

]
.

Therefore, the frame operator S is represented by the matrix

S = THT =

[
0 −

√
3/2

√
3/2

1 −1/2 −1/2

]


0 1

−
√

3/2 −1/2√
3/2 −1/2


 =

3

2

[
1 0
0 1

]
=

3

2
I2,

and hence S = AIR2 with A = 3/2, which implies, by Theorem 4.20, that {g1,g2,g3} is a tight
frame (for R2).
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g1
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Figure 4: The Mercedes-Benz frame.

The design of tight frames is challenging in general. It is hence interesting to devise simple system-
atic methods for obtaining tight frames. The following theorem shows how we can obtain a tight
frame from a given general frame.

Theorem 4.22. Let {gk}k∈K be a frame for the Hilbert space H with frame operator S. Denote
the positive definite square root of S−1 by S−1/2. Then {S−1/2gk}k∈K is a tight frame for H with
frame bound A = 1, i.e.,

x =
∑

k∈K

〈
x,S−1/2gk

〉
S−1/2gk, for all x ∈ H.

Proof. Since S−1 is self-adjoint and positive definite by Theorem 4.12, it has, by Lemma 4.10, a
unique self-adjoint positive definite square root S−1/2 that commutes with S−1. Moreover S−1/2
also commutes with S, which can be seen as follows:

S−1/2S−1 = S−1S−1/2

SS−1/2S−1 = S−1/2

SS−1/2 = S−1/2S.

The proof is then effected by noting the following:

x = S−1Sx = S−1/2S−1/2Sx

= S−1/2SS−1/2x

=
∑

k∈K

〈
S−1/2x, gk

〉
S−1/2gk

=
∑

k∈K

〈
x,S−1/2gk

〉
S−1/2gk.
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It is evident that every ONB is a tight frame with A = 1. Note, however, that conversely a tight
frame (even with A = 1) need not be an orthonormal or orthogonal basis, as can be seen from
Example 4.4. However, as the next theorem shows, a tight frame with A = 1 and ‖gk‖ = 1, for
all k ∈ K, is necessarily an ONB.

Theorem 4.23. A tight frame {gk}k∈K for the Hilbert space H with A = 1 and ‖gk‖ = 1, for
all k ∈ K, is an ONB for H.

Proof. Combining
〈Sgk, gk〉 = A‖gk‖2 = ‖gk‖2

with
〈Sgk, gk〉 =

∑

j∈K
|〈gk, gj〉|2 = ‖gk‖4 +

∑

j 6=k
|〈gk, gj〉|2

we obtain
‖gk‖4 +

∑

j 6=k
|〈gk, gj〉|2 = ‖gk‖2.

Since ‖gk‖2 = 1, for all k ∈ K, it follows that
∑

j 6=k |〈gk, gj〉|2 = 0, for all k ∈ K. This implies that
the elements of {gj}j∈K are necessarily orthogonal to each other.

There is an elegant result that tells us that every tight frame with frame bound A = 1 can be
realized as an orthogonal projection of an ONB from a space with larger dimension. This result is
known as Naimark’s theorem. Here we state the finite-dimensional version of this theorem, for the
infinite-dimensional version see [24].

Theorem 4.24 (Naimark, [24, Prop. 1.1]). Let N > M . Suppose that the set {g1, . . . ,gN},
gk ∈ H, k = 1, . . . , N , is a tight frame for an M -dimensional Hilbert space H with frame bound
A = 1. Then, there exists an N -dimensional Hilbert space K ⊃ H and an ONB {e1, . . . , eN} for K
such that Pek = gk, k = 1, . . . , N , where P : K → K is the orthogonal projection onto H.

We omit the proof and illustrate the theorem by an example instead.

Example 4.25. Consider the Hilbert space K = R3, and assume that H ⊂ K is the plane spanned
by the vectors [1 0 0]T and [0 1 0]T, i.e.,

H = span
{

[1 0 0]T, [0 1 0]T
}
.

We can construct a tight frame for H with three elements and frame bound A = 1 if we rescale the
Mercedes-Benz frame from Example 4.21. Specifically, consider the vectors gk, k = 1, 2, 3, defined
in (54) and let g′k ,

√
2/3 gk, k = 1, 2, 3. In the following, we think about the two-dimensional

vectors g′k as being embedded into the three-dimensional space K with the third coordinate (in the
standard basis of K) being equal to zero. Clearly, {g′k}3k=1 is a tight frame for H with frame bound
A = 1. Now consider the following three vectors in K:

e1 =




0√
2/3

−1/
√

3


 , e2 =



−1/
√

2

−1/
√

6

−1/
√

3


 , e3 =




1/
√

2

−1/
√

6

−1/
√

3


 .
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Direct calculation reveals that {ek}3k=1 is an ONB for K. Observe that the frame vectors g′k, k =
1, 2, 3, can be obtained from the ONB vectors ek, k = 1, 2, 3, by applying the orthogonal projection
from K onto H:

P ,




1 0 0
0 1 0
0 0 0


 ,

according to g′k = Pek, k = 1, 2, 3. This illustrates Naimark’s theorem.

4.5 Exact Frames and Biorthonormality

In Section 3.2 we studied expansions of signals in CM into (not necessarily orthogonal) bases. The
main results we established in this context can be summarized as follows:

1. The number of vectors in a basis is always equal to the dimension of the Hilbert space under
consideration. Every set of vectors that spans CM and has more than M vectors is necessarily
redundant, i.e., the vectors in this set are linearly dependent. Removal of an arbitrary vector
from a basis for CM leaves a set that no longer spans CM .

2. For a given basis {ek}Mk=1 every signal x ∈ CM has a unique representation according to

x =
M∑

k=1

〈x, ek〉 ẽk. (55)

The basis {ek}Mk=1 and its dual basis {ẽk}Mk=1 satisfy the biorthonormality relation (20).

The theory of ONBs in infinite-dimensional spaces is well-developed. In this section, we ask how the
concept of general (i.e., not necessarily orthogonal) bases can be extended to infinite-dimensional
spaces. Clearly, in the infinite-dimensional case, we can not simply say that the number of elements
in a basis must be equal to the dimension of the Hilbert space. However, we can use the property
that removing an element from a basis, leaves us with an incomplete set of vectors to motivate the
following definition.

Definition 4.26. Let {gk}k∈K be a frame for the Hilbert space H. We call the frame {gk}k∈K
exact if, for all m ∈ K, the set {gk}k 6=m is incomplete for H; we call the frame {gk}k∈K inexact if
there is at least one element gm that can be removed from the frame, so that the set {gk}k 6=m is
again a frame for H.

There are two more properties of general bases in finite-dimensional spaces that carry over to the
infinite-dimensional case, namely uniqueness of representation in the sense of (55) and biorthonor-
mality between the frame and its canonical dual. To show that representation of a signal in an
exact frame is unique and that an exact frame is biorthonormal to its canonical dual frame, we will
need the following two lemmas.

Let {gk}k∈K and {g̃k}k∈K be canonical dual frames. The first lemma below states that for a
fixed x ∈ H, among all possible expansion coefficient sequences {ck}k∈K satisfying x =

∑
k∈K ckgk,

the coefficients ck = 〈x, g̃k〉 have minimum l2-norm.
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Lemma 4.27 ([5]). Let {gk}k∈K be a frame for the Hilbert space H and {g̃k}k∈K its canonical dual
frame. For a fixed x ∈ H, let ck = 〈x, g̃k〉 so that x =

∑
k∈K ckgk. If it is possible to find scalars

{ak}k∈K 6= {ck}k∈K such that x =
∑

k∈K akgk, then we must have

∑

k∈K
|ak|2 =

∑

k∈K
|ck|2 +

∑

k∈K
|ck − ak|2 . (56)

Proof. We have
ck = 〈x, g̃k〉 =

〈
x, S−1gk

〉
=
〈
S−1x, gk

〉
= 〈x̃, gk〉

with x̃ = S−1x. Therefore,

〈x, x̃〉 =

〈∑

k∈K
ckgk, x̃

〉
=
∑

k∈K
ck 〈gk, x̃〉 =

∑

k∈K
ckc
∗
k =

∑

k∈K
|ck|2

and

〈x, x̃〉 =

〈∑

k∈K
akgk, x̃

〉
=
∑

k∈K
ak 〈gk, x̃〉 =

∑

k∈K
akc
∗
k.

We can therefore conclude that

∑

k∈K
|ck|2 =

∑

k∈K
akc
∗
k =

∑

k∈K
a∗kck. (57)

Hence,

∑

k∈K
|ck|2 +

∑

k∈K
|ck − ak|2 =

∑

k∈K
|ck|2 +

∑

k∈K
(ck − ak) (c∗k − a∗k)

=
∑

k∈K
|ck|2 +

∑

k∈K
|ck|2 −

∑

k∈K
cka
∗
k −

∑

k∈K
c∗kak +

∑

k∈K
|ak|2 .

Using (57), we get ∑

k∈K
|ck|2 +

∑

k∈K
|ck − ak|2 =

∑

k∈K
|ak|2 .

Note that this lemma implies
∑

k∈K |ak|2 >
∑

k∈K |ck|2, i.e., the coefficient sequence {ak}k∈K has
larger l2-norm than the coefficient sequence {ck = 〈x, g̃k〉}k∈K.

Lemma 4.28 ([5]). Let {gk}k∈K be a frame for the Hilbert space H and {g̃k}k∈K its canonical dual
frame. Then for each m ∈ K, we have

∑

k 6=m
|〈gm, g̃k〉|2 =

1− |〈gm, g̃m〉|2 − |1− 〈gm, g̃m〉|2
2

.

Proof. We can represent gm in two different ways. Obviously gm =
∑

k∈K akgk with am = 1 and

ak = 0 for k 6= m, so that
∑

k∈K |ak|2 = 1. Furthermore, we can write gm =
∑

k∈K ckgk with
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ck = 〈gm, g̃k〉. From (56) it then follows that

1 =
∑

k∈K
|ak|2 =

∑

k∈K
|ck|2 +

∑

k∈K
|ck − ak|2

=
∑

k∈K
|ck|2 + |cm − am|2 +

∑

k 6=m
|ck − ak|2

=
∑

k∈K
|〈gm, g̃k〉|2 + |〈gm, g̃m〉 − 1|2 +

∑

k 6=m
|〈gm, g̃k〉|2

= 2
∑

k 6=m
|〈gm, g̃k〉|2 + |〈gm, g̃m〉|2 + |1− 〈gm, g̃m〉|2

and hence ∑

k 6=m
|〈gm, g̃k〉|2 =

1− |〈gm, g̃m〉|2 − |1− 〈gm, g̃m〉|2
2

.

We are now able to formulate an equivalent condition for a frame to be exact.

Theorem 4.29 ([5]). Let {gk}k∈K be a frame for the Hilbert space H and {g̃k}k∈K its canonical
dual frame. Then,

1. {gk}k∈K is exact if and only if 〈gm, g̃m〉 = 1 for all m ∈ K;

2. {gk}k∈K is inexact if and only if there exists at least one m ∈ K such that 〈gm, g̃m〉 6= 1.

Proof. We first show that if 〈gm, g̃m〉 = 1 for all m ∈ K, then {gk}k 6=m is incomplete for H (for
all m ∈ K) and hence {gk}k∈K is an exact frame for H. Indeed, fix an arbitrary m ∈ K. From
Lemma 4.28 we have

∑

k 6=m
|〈gm, g̃k〉|2 =

1− |〈gm, g̃m〉|2 − |1− 〈gm, g̃m〉|2
2

.

Since 〈gm, g̃m〉 = 1, we have
∑

k 6=m |〈gm, g̃k〉|2 = 0 so that 〈gm, g̃k〉 = 〈g̃m, gk〉 = 0 for all k 6= m.
But g̃m 6= 0 since 〈gm, g̃m〉 = 1. Therefore, {gk}k 6=m is incomplete for H, because g̃m 6= 0 is
orthogonal to all elements of the set {gk}k 6=m.

Next, we show that if there exists at least one m ∈ K such that 〈gm, g̃m〉 6= 1, then {gk}k∈K is
inexact. More specifically, we will show that {gk}k 6=m is still a frame for H if 〈gm, g̃m〉 6= 1. We
start by noting that

gm =
∑

k∈K

〈
gm, g̃k

〉
gk =

〈
gm, g̃m

〉
gm +

∑

k 6=m

〈
gm, g̃k

〉
gk. (58)

If 〈gm, g̃m〉 6= 1, (58) can be rewritten as

gm =
1

1− 〈gm, g̃m〉
∑

k 6=m
〈gm, g̃k〉 gk,
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and for every x ∈ H we have

|〈x, gm〉|2 =

∣∣∣∣
1

1− 〈gm, g̃m〉

∣∣∣∣
2
∣∣∣∣∣∣
∑

k 6=m
〈gm, g̃k〉 〈x, gk〉

∣∣∣∣∣∣

2

≤ 1

|1− 〈gm, g̃m〉|2


∑

k 6=m
|〈gm, g̃k〉|2




∑

k 6=m
|〈x, gk〉|2


 .

Therefore

∑

k∈K
|〈x, gk〉|2 = |〈x, gm〉|2 +

∑

k 6=m
|〈x, gk〉|2

≤ 1

|1− 〈gm, g̃m〉|2


∑

k 6=m
|〈gm, g̃k〉|2




∑

k 6=m
|〈x, gk〉|2


+

∑

k 6=m
|〈x, gk〉|2

=
∑

k 6=m
|〈x, gk〉|2


1 +

1

|1− 〈gm, g̃m〉|2
∑

k 6=m
|〈gm, g̃k〉|2




︸ ︷︷ ︸
C

= C
∑

k 6=m
|〈x, gk〉|2

or equivalently
1

C

∑

k∈K
|〈x, gk〉|2 ≤

∑

k 6=m
|〈x, gk〉|2 .

With (36) it follows that

A

C
‖x‖2 ≤ 1

C

∑

k∈K
|〈x, gk〉|2 ≤

∑

k 6=m
|〈x, gk〉|2 ≤

∑

k∈K
|〈x, gk〉|2 ≤ B‖x‖2, (59)

where A and B are the frame bounds of the frame {gk}k∈K. Note that (trivially) C > 0; more-
over C < ∞ since 〈gm, g̃m〉 6= 1 and

∑
k 6=m |〈gm, g̃k〉|2 < ∞ as a consequence of {g̃k}k∈K being a

frame for H. This implies that A/C > 0, and, therefore, (59) shows that {gk}k 6=m is a frame with
frame bounds A/C and B.

To see that, conversely, exactness of {gk}k∈K implies that 〈gm, g̃m〉 = 1 for all m ∈ K, we suppose
that {gk}k∈K is exact and 〈gm, g̃m〉 6= 1 for at least one m ∈ K. But the condition 〈gm, g̃m〉 6= 1 for
at least one m ∈ K implies that {gk}k∈K is inexact, which results in a contradiction. It remains to
show that {gk}k∈K inexact implies 〈gm, g̃m〉 6= 1 for at least one m ∈ K. Suppose that {gk}k∈K is
inexact and 〈gm, g̃m〉 = 1 for all m ∈ K. But the condition 〈gm, g̃m〉 = 1 for all m ∈ K implies that
{gk}k∈K is exact, which again results in a contradiction.

Now we are ready to state the two main results of this section. The first result generalizes the
biorthonormality relation (20) to the infinite-dimensional setting.
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Corollary 4.30 ([5]). Let {gk}k∈K be a frame for the Hilbert space H. If {gk}k∈K is exact, then
{gk}k∈K and its canonical dual {g̃k}k∈K are biorthonormal, i.e.,

〈gm, g̃k〉 =

{
1, if k = m

0, if k 6= m.

Conversely, if {gk}k∈K and {g̃k}k∈K are biorthonormal, then {gk}k∈K is exact.

Proof. If {gk}k∈K is exact, then biorthonormality follows by noting that Theorem 4.29 implies
〈gm, g̃m〉 = 1 for all m ∈ K, and Lemma 4.28 implies

∑
k 6=m |〈gm, g̃k〉|2 = 0 for all m ∈ K and thus

〈gm, g̃k〉 = 0 for all k 6= m. To show that, conversely, biorthonormality of {gk}k∈K and {g̃k}k∈K
implies that the frame {gk}k∈K is exact, we simply note that 〈gm, g̃m〉 = 1 for all m ∈ K, by
Theorem 4.29, implies that {gk}k∈K is exact.

The second main result in this section states that the expansion into an exact frame is unique and,
therefore, the concept of an exact frame generalizes that of a basis to infinite-dimensional spaces.

Theorem 4.31 ([5]). If {gk}k∈K is an exact frame for the Hilbert space H and x =
∑

k∈K ckgk
with x ∈ H, then the coefficients {ck}k∈K are unique and are given by

ck = 〈x, g̃k〉 ,

where {g̃k}k∈K is the canonical dual frame to {gk}k∈K.

Proof. We know from (50) that x can be written as x =
∑

k∈K 〈x, g̃k〉 gk. Now assume that there
is another set of coefficients {ck}k∈K such that

x =
∑

k∈K
ckgk. (60)

Taking the inner product of both sides of (60) with g̃m and using the biorthonormality relation

〈gk, g̃m〉 =

{
1, k = m

0, k 6= m

we obtain
〈x, g̃m〉 =

∑

k∈K
ck 〈gk, g̃m〉 = cm.

Thus, cm = 〈x, g̃m〉 for all m ∈ K and the proof is completed.

5 The Sampling Theorem

We now discuss one of the most important results in signal processing—the sampling theorem. We
will then show how the sampling theorem can be interpreted as a frame decomposition.

Consider a signal x(t) in the space of square-integrable functions L2. In general, we can not expect
this signal to be uniquely specified by its samples {x(kT )}k∈Z, where T is the sampling period.
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The sampling theorem tells us, however, that if a signal is strictly bandlimited, i.e., its Fourier
transform vanishes outside a certain finite interval, and if T is chosen small enough (relative to
the signal’s bandwidth), then the samples {x(kT )}k∈Z do uniquely specify the signal and we can
reconstruct x(t) from {x(kT )}k∈Z perfectly. The process of obtaining the samples {x(kT )}k∈Z from
the continuous-time signal x(t) is called A/D conversion5; the process of reconstruction of the signal
x(t) from its samples is called digital-to-analog (D/A) conversion. We shall now formally state and
prove the sampling theorem.

Let x̂(f) denote the Fourier transform of the signal x(t), i.e.,

x̂(f) =

∫ ∞

−∞
x(t)e−i2πtfdt.

We say that x(t) is bandlimited to BHz if x̂(f) = 0 for |f | > B. Note that this implies that the
total bandwidth of x(t), counting positive and negative frequencies, is 2B. The Hilbert space of L2
functions that are bandlimited to BHz is denoted as L2(B).

Next, consider the sequence of samples
{
x[k] , x(kT )

}
k∈Z of the signal x(t) ∈ L2(B) and compute

its discrete-time Fourier transform (DTFT):

x̂d(f) ,
∞∑

k=−∞
x[k]e−i2πkf

=
∞∑

k=−∞
x(kT )e−i2πkf

=
1

T

∞∑

k=−∞
x̂

(
f + k

T

)
, (61)

where in the last step we used the Poisson summation formula6 [25, Cor. 2.6].

We can see that x̂d(f) is simply a periodized version of x̂(f). Now, it follows that for 1/T ≥ 2B
there is no overlap between the shifted replica of x̂(f/T ), whereas for 1/T < 2B, we do get the
different shifted versions to overlap (see Figure 5). We can therefore conclude that for 1/T ≥ 2B,
x̂(f) can be recovered exactly from x̂d(f) by means of applying an ideal lowpass filter with gain T
and cutoff frequency BT to x̂d(f). Specifically, we find that

x̂(f/T ) = x̂d(f)T ĥLP(f) (62)

with

ĥLP(f) =

{
1, |f | ≤ BT
0, otherwise.

(63)

From (62), using (61), we immediately see that we can recover the Fourier transform of x(t) from
the sequence of samples {x[k]}k∈Z according to

x̂(f) = T ĥLP(fT )
∞∑

k=−∞
x[k]e−i2πkfT . (64)

5Strictly speaking A/D conversion also involves quantization of the samples.
6 Let x(t) ∈ L2 with Fourier transform x̂(f) =

∫∞
−∞ x(t)e−i2πtfdt. The Poisson summation formula states that∑∞

k=−∞ x(k) =
∑∞
k=−∞ x̂(k).
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Figure 5: Sampling of a signal that is band-limited to BHz: (a) spectrum of the original signal; (b)
spectrum of the sampled signal for 1/T > 2B; (c) spectrum of the sampled signal for 1/T < 2B,
where aliasing occurs.
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We can therefore recover x(t) as follows:

x(t) =

∫ ∞

−∞
x̂(f)ei2πtfdf

=

∫ ∞

−∞
T ĥLP(fT )

∞∑

k=−∞
x[k]e−i2πkfT ei2πftdf

=
∞∑

k=−∞
x[k]

∫ ∞

−∞
ĥLP(fT )ei2πfT (t/T−k)d(fT )

=
∞∑

k=−∞
x[k]hLP

(
t

T
− k
)

(65)

= 2BT

∞∑

k=−∞
x[k] sinc(2B(t− kT )),

where hLP(t) is the inverse Fourier transform of ĥLP(f), i.e,

hLP(t) =

∫ ∞

−∞
ĥLP(f)ei2πtfdf,

and

sinc(x) ,
sin(πx)

πx
.

Summarizing our findings, we obtain the following theorem.

Theorem 5.1 (Sampling theorem [26, Sec. 7.2]). Let x(t) ∈ L2(B). Then x(t) is uniquely specified
by its samples x(kT ), k ∈ Z, if 1/T ≥ 2B. Specifically, we can reconstruct x(t) from x(kT ), k ∈ Z,
according to

x(t) = 2BT
∞∑

k=−∞
x(kT ) sinc(2B(t− kT )). (66)

5.1 Sampling Theorem as a Frame Expansion

We shall next show how the representation (66) can be interpreted as a frame expansion. The
samples x(kT ) can be written as the inner product of the signal x(t) with the functions

gk(t) = 2B sinc(2B(t− kT )), k ∈ Z. (67)

Indeed, using the fact that the signal x(t) is band-limited to BHz, we get

x(kT ) =

∫ B

−B
x̂(f)ei2πkfTdf = 〈x̂, ĝk〉 ,

where

ĝk(f) =

{
e−i2πkfT , |f | ≤ B
0, otherwise
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is the Fourier transform of gk(t). We can thus rewrite (66) as

x(t) = T
∞∑

k=−∞
〈x, gk〉 gk(t).

Therefore, the interpolation of an analog signal from its samples {x(kT )}k∈Z can be interpreted
as the reconstruction of x(t) from its expansion coefficients x(kT ) = 〈x, gk〉 in the function set
{gk(t)}k∈Z. We shall next prove that {gk(t)}k∈Z is a frame for the space L2(B). Simply note that
for x(t) ∈ L2(B), we have

‖x‖2 = 〈x, x〉 =

〈
T

∞∑

k=−∞
〈x, gk〉 gk(t), x

〉
= T

∞∑

k=−∞
|〈x, gk〉|2

and therefore
1

T
‖x‖2 =

∞∑

k=−∞
|〈x, gk〉|2 .

This shows that {gk(t)}k∈Z is, in fact, a tight frame for L2(B) with frame bound A = 1/T. We
emphasize that the frame is tight irrespective of the sampling rate (of course, as long as 1/T > 2B).

The analysis operator corresponding to this frame is given by T : L2(B)→ l2 as

T : x→ {〈x, gk〉}k∈Z, (68)

i.e., T maps the signal x(t) to the sequence of samples {x(kT )}k∈Z.

The action of the adjoint of the analysis operator T∗ : l2 → L2(B) is to perform interpolation
according to

T∗ : {ck}k∈Z →
∞∑

k=−∞
ckgk.

The frame operator S : L2(B)→ L2(B) is given by S = T∗T and acts as follows

S : x(t)→
∞∑

k=−∞
〈x, gk〉 gk(t).

Since {gk(t)}k∈Z is a tight frame for L2(B) with frame bound A = 1/T , as already shown, it follows
that S = (1/T )IL2(B).

The canonical dual frame can be computed easily by applying the inverse of the frame operator to
the frame functions {gk(t)}k∈Z according to

g̃k(t) = S−1gk(t) = T IL2(B)gk(t) = Tgk(t), k ∈ Z.

Recall that exact frames have a minimality property in the following sense: If we remove anyone
element from an exact frame, the resulting set will be incomplete. In the case of sampling, we
have an analogous situation: In the proof of the sampling theorem we saw that if we sample at
a rate smaller than the critical sampling rate 1/T = 2B, we cannot recover the signal x(t) from
its samples {x(kT )}k∈Z. In other words, the set {gk(t)}k∈Z in (67) is not complete for L2(B)
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when 1/T < 2B. This suggests that critical sampling 1/T = 2B could implement an exact frame
decomposition. We show now that this is, indeed, the case. Simply note that

〈gk, g̃k〉 = T 〈gk, gk〉 = T‖gk‖2 = T‖ĝk‖2 = 2BT, for all k ∈ Z.

For critical sampling 2BT = 1 and, hence, 〈gk, g̃k〉 = 1, for all k ∈ Z. Theorem 4.29 therefore
allows us to conclude that {gk(t)}k∈Z is an exact frame for L2(B).

Next, we show that {gk(t)}k∈Z is not only an exact frame, but, when properly normalized, even an
ONB for L2(B), a fact well-known in sampling theory. To this end, we first renormalize the frame
functions gk(t) according to

g′k(t) =
√
Tgk(t)

so that

x(t) =

∞∑

k=−∞

〈
x, g′k

〉
g′k(t).

We see that {g′k(t)}k∈Z is a tight frame for L2(B) with A = 1. Moreover, we have

‖g′k‖2 = T‖gk‖2 = 2BT.

Thus, in the case of critical sampling, ‖g′k‖2 = 1, for all k ∈ Z, and Theorem 4.23 allows us to
conclude that {g′k(t)}k∈Z is an ONB for L2(B).

In contrast to exact frames, inexact frames are redundant, in the sense that there is at least one
element that can be removed with the resulting set still being complete. The situation is similar in
the oversampled case, i.e., when the sampling rate satisfies 1/T > 2B. In this case, we collect more
samples than actually needed for perfect reconstruction of x(t) from its samples. This suggests
that {gk(t)}k∈Z could be an inexact frame for L2(B) in the oversampled case. Indeed, according to
Theorem 4.29 the condition

〈gm, g̃m〉 = 2BT < 1, for all m ∈ Z, (69)

implies that the frame {gk(t)}k∈Z is inexact for 1/T > 2B. In fact, as can be seen from the proof
of Theorem 4.29, (69) guarantees even more: for every m ∈ Z, the set {gk(t)}k 6=m is complete
for L2(B). Hence, the removal of any sample x(mT ) from the set of samples {x(kT )}k∈Z still
leaves us with a frame decomposition so that x(t) can, in theory, be recovered from the samples
{x(kT )}k 6=m. The resulting frame {gk(t)}k 6=m will, however, no longer be tight, which makes the
computation of the canonical dual frame complicated, in general.

5.2 Design Freedom in Oversampled A/D Conversion

In the critically sampled case, 1/T = 2B, the ideal lowpass filter of bandwidth BT with the transfer
function specified in (63) is the only filter that provides perfect reconstruction of the spectrum x̂(f)
of x(t) according to (62) (see Figure 6). In the oversampled case, there is, in general, an infinite
number of reconstruction filters that provide perfect reconstruction. The only requirement the
reconstruction filter has to satisfy is that its transfer function be constant within the frequency
range −BT ≤ f ≤ BT (see Figure 7). Therefore, in the oversampled case one has more freedom
in designing the reconstruction filter. In A/D converter practice this design freedom is exploited
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Figure 6: Reconstruction filter in the critically sampled case.
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−1
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ĥ(f)

0.5−0.5

arbitrary shape here

Figure 7: Freedom in the design of the reconstruction filter.

to design reconstruction filters with desirable filter characteristics, like, e.g., rolloff in the transfer
function.

Specifically, repeating the steps leading from (62) to (65), we see that

x(t) =
∞∑

k=−∞
x[k]h

(
t

T
− k
)
, (70)

where the Fourier transform of h(t) is given by

ĥ(f) =





1, |f | ≤ BT
arb(f), BT < |f | ≤ 1

2

0, |f | > 1
2

. (71)

Here and in what follows arb(·) denotes an arbitrary bounded function. In other words, every set
{h(t/T − k)}k∈Z with the Fourier transform of h(t) satisfying (71) is a valid dual frame for the
frame {gk(t) = 2B sinc(2B(t − kT ))}k∈Z. Obviously, there are infinitely many dual frames in the
oversampled case.

We next show how the freedom in the design of the reconstruction filter with transfer function
specified in (71) can be interpreted in terms of the freedom in choosing the left-inverse L of the
analysis operator T as discussed in Section 4.3. Recall the parametrization (52) of all left-inverses
of the operator T:

L = T̃∗P + M(Il2 − P), (72)
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ĥout(f)

Figure 8: The reconstruction filter as a parametrized left-inverse of the analysis operator.

where M : l2 → H is an arbitrary bounded linear operator and P : l2 → l2 is the orthogonal
projection operator onto the range space of T. In (61) we saw that the DTFT7 of the sequence{
x[k] = x(kT )

}
k∈Z is compactly supported on the frequency interval [−BT,BT ] (see Figure 8).

In other words, the range space of the analysis operator T defined in (68) is the space of l2-
sequences with DTFT supported on the interval [−BT,BT ] (see Figure 8). It is left as an exercise
to the reader to verify, using Parseval’s theorem,8 that the orthogonal complement of the range
space of T is the space of l2-sequences with DTFT supported on the set [−1/2,−BT ] ∪ [BT, 1/2]
(see Figure 8). Thus, in the case of oversampled A/D conversion, the operator P : l2 → l2 is the
orthogonal projection operator onto the subspace of l2-sequences with DTFT supported on the
interval [−BT,BT ]; the operator (Il2 − P) : l2 → l2 is the orthogonal projection operator onto the
subspace of l2-sequences with DTFT supported on the set [−1/2,−BT ] ∪ [BT, 1/2].

To see the parallels between (70) and (72), let us decompose h(t) as follows (see Figure 8)

h(t) = hLP(t) + hout(t) , (73)

where the Fourier transform of hLP(t) is given by (63) and the Fourier transform of hout(t) is

ĥout(f) =

{
arb(f), BT ≤ |f | ≤ 1

2

0, otherwise.
(74)

Now it is clear, and it is left to the reader to verify formally, that the operator A : l2 → L2(B)
defined as

A : {ck}k∈Z →
∞∑

k=−∞
ckhLP

(
t

T
− k
)

(75)

acts by first projecting the sequence {ck}k∈Z onto the subspace of l2-sequences with DTFT sup-
ported on the interval [−BT,BT ] and then performs interpolation using the canonical dual frame

7The DTFT is a periodic function with period one. From here on, we consider the DTFT as a function supported
on its fundamental period [−1/2, 1/2].

8 Let {ak}k∈Z, {bk}k∈Z ∈ l2 with DTFT â(f) =
∑∞
k=−∞ ake

−i2πkf and b̂(f) =
∑∞
k=−∞ bke

−i2πkf , respectively.

Parseval’s theorem states that
∑∞
k=−∞ akb

∗
k =

∫ 1/2

−1/2
â(f )̂b∗(f)df . In particular,

∑∞
k=−∞ |ak|

2 =
∫ 1/2

−1/2
|â(f)|2 df .
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elements g̃k(t) = hLP(t/T − k). In other words A = T̃∗P. Similarly, it is left to the reader to verify
formally, that the operator B : l2 → L2(B) defined as

B : {ck}k∈Z →
∞∑

k=−∞
ckhout

(
t

T
− k
)

(76)

can be written as B = M(Il2 − P). Here, (Il2 − P) : l2 → l2 is the projection operator onto the
subspace of l2-sequences with DTFT supported on the set [−1/2,−BT ] ∪ [BT, 1/2]; the operator
M : l2 → L2 is defined as

M : {ck}k∈Z →
∞∑

k=−∞
ckhM

(
t

T
− k
)

(77)

with the Fourier transform of hM (t) given by

ĥM (f) =

{
arb2(f), −1

2 ≤ |f | ≤ 1
2

0, otherwise,
(78)

where arb2(f) is an arbitrary bounded function that equals arb(f) for BT ≤ |f | ≤ 1
2 . To summarize,

we note that the operator B corresponds to the second term on the right-hand side of (72).

We can therefore write the decomposition (70) as

x(t) =

∞∑

k=−∞
x[k]h

(
t

T
− k
)

=
∞∑

k=−∞
x[k]hLP

(
t

T
− k
)

︸ ︷︷ ︸
T̃∗PTx(t)

+
∞∑

k=−∞
x[k]hout

(
t

T
− k
)

︸ ︷︷ ︸
M(Il2−P)Tx(t)

= LTx(t).

5.3 Noise Reduction in Oversampled A/D Conversion

Consider again the bandlimited signal x(t) ∈ L2(B). Assume, as before, that the signal is sampled
at a rate 1/T ≥ 2B. Now assume that the corresponding samples x[k] = x(kT ), k ∈ Z, are subject
to noise, i.e., we observe

x′[k] = x[k] + w[k], k ∈ Z,

where the w[k] are independent identically distributed zero-mean random variables, with variance
E |w[k]|2 = σ2. Assume that reconstruction is performed from the noisy samples x′[k], k ∈ Z, using
the ideal lowpass filter with transfer function ĥLP(f) of bandwidth BT specified in (63), i.e., we
reconstruct using the canonical dual frame according to

x′(t) =
∞∑

k=−∞
x′[k]hLP

(
t

T
− k
)
.

Obviously, the presence of noise precludes perfect reconstruction. It is, however, interesting to
assess the impact of oversampling on the variance of the reconstruction error defined as

σ2oversampling , Ew
∣∣x(t)− x′(t)

∣∣2, (79)
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where the expectation is with respect to the random variables w[k], k ∈ Z, and the right-hand side
of (79) does not depend on t, as we shall see below. If we decompose x(t) as in (65), we see that

σ2oversampling = Ew
∣∣x(t)− x′(t)

∣∣2 (80)

= Ew

∣∣∣∣∣
∞∑

k=−∞
w[k]hLP

(
t

T
− k
)∣∣∣∣∣

2

=
∞∑

k=−∞

∞∑

k′=−∞
Ew{w[k]w∗[k′]}hLP

(
t

T
− k
)
h∗LP

(
t

T
− k′

)

= σ2
∞∑

k=−∞

∣∣∣∣hLP
(
t

T
− k
)∣∣∣∣

2

. (81)

Next applying the Poisson summation formula (as stated in Footnote 6) to the function l(t′) ,
hLP

(
t
T − t′

)
e−2πit

′f with Fourier transform l̂(f ′) = ĥLP(−f − f ′)e−2πi(t/T )(f+f ′), we have

∞∑

k=−∞
hLP

(
t

T
− k
)
e−2πikf =

∞∑

k=−∞
l(k) =

∞∑

k=−∞
l̂(k) =

∞∑

k=−∞
ĥLP(−f − k)e−2πi(t/T )(f+k). (82)

Since ĥLP(f) is zero outside the interval −1/2 ≤ f ≤ 1/2, it follows that

∞∑

k=−∞
ĥLP(−f − k)e−2πi(t/T )(f+k) = ĥLP(−f)e−2πi(t/T )f , for f ∈ [−1/2, 1/2]. (83)

We conclude from (82) and (83) that the DTFT of the sequence
{
ak , hLP(t/T − k)

}
k∈Z is given (in

the fundamental interval f ∈ [−1/2, 1/2]) by ĥLP(−f)e−2πi(t/T )f and hence we can apply Parseval’s
theorem (as stated in Footnote 8) and rewrite (81) according to

σ2oversampling = σ2
∞∑

k=−∞

∣∣∣∣hLP
(
t

T
− k
)∣∣∣∣

2

= σ2
∫ 1/2

−1/2

∣∣∣ĥLP(−f)e−2πi(t/T )f
∣∣∣
2
df

= σ2
∫ 1/2

−1/2

∣∣∣ĥLP(f)
∣∣∣
2
df

= σ22BT. (84)

We see that the average mean squared reconstruction error is inversely proportional to the over-
sampling factor 1/(2BT ). Therefore, each doubling of the oversampling factor decreases the mean
squared error by 3 dB.

Consider now reconstruction performed using a general filter that provides perfect reconstruction
in the noiseless case. Specifically, we have

x′(t) =

∞∑

k=−∞
x′[k]h

(
t

T
− k
)
,

39



where h(t) is given by (73). In this case, the average mean squared reconstruction error can be
computed repeating the steps leading from (80) to (84) and is given by

σ2oversampling = σ2
∫ 1/2

−1/2

∣∣∣ĥ(f)
∣∣∣
2
df (85)

where ĥ(f) is the Fourier transform of h(t) and is specified in (71). Using (73), we can now
decompose σ2oversampling in (85) into two terms according to

σ2oversampling = σ2
∫ BT

−BT

∣∣∣ĥLP(f)
∣∣∣
2
df

︸ ︷︷ ︸
2BT

+σ2
∫

BT≤|f |≤1/2

∣∣∣ĥout(f)
∣∣∣
2
df. (86)

We see that two components contribute to the reconstruction error. Comparing (86) to (84),
we conclude that the first term in (86) corresponds to the error due to noise in the signal-band
|f | ≤ BT picked up by the ideal lowpass filter with transfer function ĥLP(f). The second term
in (86) is due to the fact that a generalized inverse passes some of the noise in the out-of-band region
BT ≤ |f | ≤ 1/2. The amount of additional noise in the reconstructed signal is determined by the
bandwidth and the shape of the reconstruction filter’s transfer function in the out-of-band region.
In this sense, there exists a tradeoff between noise reduction and design freedom in oversampled
A/D conversion. Practically desirable (or realizable) reconstruction filters (i.e., filters with rolloff)
lead to additional reconstruction error.

6 Important Classes of Frames

There are two important classes of structured signal expansions that have found widespread use
in practical applications, namely Weyl-Heisenberg (or Gabor) expansions and affine (or wavelet)
expansions. Weyl-Heisenberg expansions provide a decomposition into time-shifted and modulated
versions of a “window function” g(t). Wavelet expansions realize decompositions into time-shifted
and dilated versions of a mother wavelet g(t). Thanks to the strong structural properties of Weyl-
Heisenberg and wavelet expansions, there are efficient algorithms for applying the corresponding
analysis and synthesis operators. Weyl-Heisenberg and wavelet expansions have been successfully
used in signal detection, image representation, object recognition, and wireless communications.
We shall next show that these signal expansions can be cast into the language of frame theory. For
a detailed analysis of these classes of frames, we refer the interested reader to [4].

6.1 Weyl-Heisenberg Frames

We start by defining a linear operator that realizes time-frequency shifts when applied to a given
function.

Definition 6.1. The Weyl operator W(T,F )
m,n : L2 → L2 is defined as

W(T,F )
m,n : x(t)→ ei2πnFtx(t−mT ),

where m,n ∈ Z, and T > 0 and F > 0 are fixed time and frequency shift parameters, respectively.

40



Now consider some prototype (or window) function g(t) ∈ L2. Fix the parameters T > 0 and F > 0.
By shifting the window function g(t) in time by integer multiples of T and in frequency by integer
multiples of F , we get a highly-structured set of functions according to

gm,n(t) , W(T,F )
m,n g(t) = ei2πnFtg(t−mT ), m ∈ Z, n ∈ Z.

The set
{
gm,n(t) = ei2πnFtg(t−mT )

}
m∈Z, n∈Z is referred to as a Weyl-Heisenberg (WH) set and is

denoted by (g, T, F ). When the WH set (g, T, F ) is a frame for L2, it is called a WH frame for L2.
Whether or not a WH set (g, T, F ) is a frame for L2 is, in general, difficult to answer. The answer
depends on the window function g(t) as well as on the shift parameters T and F . Intuitively, if the
parameters T and F are “too large” for a given window function g(t), the WH set (g, T, F ) cannot
be a frame for L2. This is because a WH set (g, T, F ) with “large” parameters T and F “leaves
holes in the time-frequency plane” or equivalently in the Hilbert space L2. Indeed, this intuition is
correct and the following fundamental result formalizes it:

Theorem 6.2 ([21, Thm. 8.3.1]). Let g(t) ∈ L2 and T, F > 0 be given. Then the following holds:

• If TF > 1, then (g, T, F ) is not a frame for L2.

• If (g, T, F ) is a frame for L2, then (g, T, F ) is an exact frame if and only if TF = 1.

We see that (g, T, F ) can be a frame for L2 only if TF ≤ 1, i.e., when the shift parameters T and F
are such that the grid they induce in the time-frequency plane is sufficiently dense. Whether or
not a WH set (g, T, F ) with TF ≤ 1 is a frame for L2 depends on the window function g(t) and on
the values of T and F . There is an important special case where a simple answer can be given.

Example 6.3 (Gaussian, [21, Thm. 8.6.1]). Let T, F > 0 and take g(t) = e−t
2
. Then the WH set

{
W(T,F )
m,n g(t)

}
m∈Z, n∈Z

is a frame for L2 if and only if TF < 1.

6.2 Wavelets

Both for wavelet frames and WH frames we deal with function sets that are obtained by letting
a special class of parametrized operators act on a fixed function. In the case of WH frames the
underlying operator realizes time and frequency shifts. In the case of wavelets, the generating
operator realizes time-shifts and scaling. Specifically, we have the following definition.

Definition 6.4. The operator V(T,S)
m,n : L2 → L2 is defined as

V(T,S)
m,n : x(t)→ Sn/2x(Snt−mT ),

where m,n ∈ Z, and T > 0 and S > 0 are fixed time and scaling parameters, respectively.

Now, just as in the case of WH expansions, consider a prototype function (or mother wavelet)
g(t) ∈ L2. Fix the parameters T > 0 and S > 0 and consider the set of functions

gm,n(t) , V(T,S)
m,n g(t) = Sn/2g(Snt−mT ), m ∈ Z, n ∈ Z.
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This set is referred to as a wavelet set. When the wavelet set
{
gm,n(t) = Sn/2g(Snt−mT )

}
m∈Z, n∈Z

with parameters T, S > 0 is a frame for L2, it is called a wavelet frame.

Similar to the case of Weyl-Heisenberg sets it is hard to say, in general, whether a given wavelet
set forms a frame for L2 or not. The answer depends on the window function g(t) and on the
parameters T and S and explicit results are known only in certain cases. We conclude this section
by detailing such a case.

Example 6.5 (Mexican hat, [21, Ex. 11.2.7]). Take S = 2 and consider the mother wavelet

g(t) =
2√
3
π−1/4(1− t2)e− 1

2
t2 .

Due to its shape, g(t) is called the Mexican hat function. It turns out that for each T < 1.97, the
wavelet set {

V(T,S)
m,n g(t)

}
m∈Z, n∈Z

is a frame for L2 [21, Ex. 11.2.7].

7 Suggested Additional Exercises

Exercise 7.1 (Weyl operator [27]). Refer to Definition 6.1 and show the following properties of
the Weyl operator.

1. The following equality holds:

W(T,F )
m,n W(T,F )

k,l = e−i2πmlTFW(T,F )
m+k,n+l.

2. The adjoint operator of W(T,F )
m,n is given by
(
W(T,F )
m,n

)∗
= e−i2πmnTFW(T,F )

−m,−n.

3. The Weyl operator is unitary on L2, i.e.,

W(T,F )
m,n

(
W(T,F )
m,n

)∗
=
(
W(T,F )
m,n

)∗
W(T,F )
m,n = IL2 .

Exercise 7.2 (Dual WH frame [3]). Assume that the WH set
{
gm,n(t) = W(T,F )

m,n g(t)
}
m∈Z, n∈Z

is

a frame for L2 with frame operator S.

1. Show that the frame operator S and its inverse S−1 commute with the Weyl operators, i.e.,

W(T,F )
m,n S = SW(T,F )

m,n

W(T,F )
m,n S−1 = S−1W(T,F )

m,n

for m,n ∈ Z.

2. Show that the minimal dual frame {g̃m,n(t) = (S−1gm,n)(t)} is a WH frame with prototype
function g̃(t) = (S−1g)(t), i.e., that

g̃m,n(t) = W(T,F )
m,n g̃(t).
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Notation

a,b, . . . vectors
A,B, . . . matrices
aT, AT transpose of the vector a and the matrix A
a∗, a∗, A∗ complex conjugate of the scalar a, element-wise complex conjugate of the

vector a, and the matrix A
aH, AH Hermitian transpose of the vector a and the matrix A
IN identity matrix of size N ×N
rank(A) rank of the matrix A
λ(A) eigenvalue of the matrix A
λmin(A), λmin(A) smallest eigenvalue of the matrix A, smallest spectral value of the

self-adjoint operator A
λmax(A), λmax(A) largest eigenvalue of the matrix A, largest spectral value of the self-adjoint

operator A
i

√
−1

, definition
A,B, . . . sets
R,C,Z,N real line, complex plane, set of all integers, set of natural numbers (including

zero)
L2 Hilbert space of complex-valued finite-energy functions
L2(B) space of square-integrable functions bandlimited to B Hz
H abstract Hilbert space
l2 Hilbert space of square-summable sequences

〈a,b〉 inner product of the vectors a and b: 〈a,b〉 ,∑i [a]i ([b]i)
∗

〈x, y〉 depending on the context: inner product in the abstract Hilbert space H or
inner product of the functions x(t) and y(t): 〈x, y〉 ,

∫∞
−∞ x(t)y∗(t)dt

‖a‖2 squared `2-norm of the vector a: ‖a‖2 ,∑i |[a]i|2
‖y‖2 depending on the context: squared norm in the abstract Hilbert space H or

squared L2-norm of the function y(t): ‖y‖2 ,
∫∞
−∞ |y(t)|2 dt

IH, Il2 , IL2 , IL2(B) identity operator in the corresponding space

R(A) range space of operator A
A∗ adjoint of operator A
x̂(f) Fourier transform of x(t): x̂(f) ,

∫∞
−∞ x(t)e−i2πtfdt

x̂d(f) Discrete-time Fourier transform of x[k]: x̂d(f) ,
∑∞

k=−∞ x[k]e−i2πkf
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