Lecture 12-13: Super-resolution of Positive Sources
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Diffraction limits resolution: A, = LGHT
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ABBE'S DIFFRACTION LIMIT (0.2 pm)

hair mammalian cell bacterium mltochondrlon: virus protein small molecule
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[picture from nobelprize.org]
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Looking inside the cell: conventional microscopy

microtubule
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Nobel Prize in Chemistry 2014

Eric Betzig Stefan W. Hell W.E. Moerner

Invention of single-molecule microscopy
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Looking inside the cell

conventional microscopy single-molecule microscopy
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Controlled photoactivation

Z

Energy

Reaction coordinate

Green fluorescent protein (GFP) Energy states [Dickson et.al. '97]
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Controlled photoactivation

- N
P e

Energy

Reaction coordinate

Green fluorescent protein (GFP) Energy states [Dickson et.al. '97]

m State A is excited to A* and returns to A upon photon emission
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Controlled photoactivation

N
Py .=

Energy

Reaction coordinate

Green fluorescent protein (GFP) Energy states [Dickson et.al. '97]

m State A is excited to A* and returns to A upon photon emission

m When I is reached from A there is no fluorescence until [

spontaneously moves to A (blinking)
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Controlled photoactivation

Z

Energy

Reaction coordinate

Green fluorescent protein (GFP) Energy states [Dickson et.al. '97]

m State A is excited to A* and returns to A upon photon emission

m When I is reached from A there is no fluorescence until [

spontaneously moves to A (blinking)
m When I moves to NN there is no fluorescence until NV is activated

by 405nm light and GFP returns to A
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Photoactivated localization microscopy (PALM) Setup

Activation Readout
Laser Laser
[405| nm) [5!81I nmy)

N

[picture from ZEISS]
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PALM Process

Step 1

Activation Boam ON

Activated Molecules

Photoactivate Molecules

Step 3. Algorithm needed.

Localize Molecules Photohleach & Record Positions




Antibodies: attach fluorescent molecules to the structure

All off
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Antibodies: attach fluorescent molecules to the structure

All off All on
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Antibodies: attach fluorescent molecules to the structure

All off All on Detector

Cannot resolve the structure!
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Frame 1
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Frame 1
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“Blinking” molecules: sparsity

e
T

Ve

Frame 1

Locate centers of “Gaussian” blobs (parametric estimation)
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“Blinking” molecules: sparsity

T
S L S
Frame 1 Frame 2 Frame 3

Locate centers of “Gaussian” blobs (parametric estimation)

Combine ~ 10000 frames.
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“Blinking” molecules: sparsity

Locate centers of “Gaussian” blobs (parametric estimation)

Combine ~ 10000 frames.

The structure is now resolved!
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Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow
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Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow

Can we make data acquisition faster?
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Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow
Can we make data acquisition faster?

Image ~ 2500 frames with 4 times more molecules per frame?

T
\{ *\&;A J
N

lﬁu‘
parametric estimation works 4 times more active molecules
= parametric estimation

does not work

13 /47



Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow
Can we make data acquisition faster?

Image ~ 2500 frames with 4 times more molecules per frame?

\&' / Ve . #

i

f p

parametric estimation works 4 times more active molecules
= parametric estimation
does not work

% J¥

Need powerful super-resolution algorithm!
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Mathematical model (discrete 1D setup for simplicity)

Object Detector

0

0
x(t) = Z$i5(t —ti), ;>0 s(t) = /flow(t —t"ax(t")at’

1 [sin(27fct) 2
a 2f. ( Tt >

Ae = ]-/fc

1 1

flow (t)
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Mathematical model (discrete 1D setup for simplicity)

Object Detector A= 1/f,

0 1 0 1

z(t) = Z zi0(t—1t;), 2; >0 s(t) = /flow(t — t(t)dt'

XZ[.CL'Q"'.CL‘N_l]TZO s=Px+1z

P = Py, is circulant
Triangular spectrum

i

—~N/2+1 —fc 0 fe N/2

15/47



Mathematical model (discrete 1D setup for simplicity)

Object

Detector A= 1/,

0 |

s(t) = / fiow(t — )z (t)dt'

s=Px-+1z

P = Py, is circulant
Flat spectrum

LIl

-N/2+1  —fe 0 fe N/2
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Mathematical model (discrete 1D setup for simplicity)

P = FHPF
DFT:
[Fli = \/% e 2TH/N N9 L1 < k< N2, 0<I<N -1
Spectrum:
P = diag([p_n/241° P2l )
m Flat:

0, otherwise

A~ {17 szC""?fC?
Pr =

m Triangular:

ﬁk:{l_ffip k=—foroo 1o

0, otherwise

Width of the convolution kernel: \. £ 1/ fe

16 /47



Super-resolution factor and stability

Triangular spectrum Flat spectrum
_N/§+ 1 7‘fc 0 f; 1\//2 —N/é+ 1 *‘fc 0 f‘c N‘/2
s=Px+z

SRF £ N/(2fe)
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Super-resolution factor and stability

Triangular spectrum Flat spectrum
_N/§+ 1 7‘fc 0 f; N‘/2 —N/é+ 1 *‘fc 0 f‘c N‘/2
s=Px+z

SRF £ N/(2fe)

?
Stability: |x — x|| < ||z|| - (amplification factor)
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Classical resolution criteria: separation is about \.

R

1.22), Ae 0.94\,
Rayleigh criterion Abbe criterion Sparrow criterion
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Rayleigh-regularity: x € R(d, )

x has fewer than r spikes in every \.d interval [A. 2 1/f]

Separation: R(2,1)

o
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Rayleigh-regularity: x € R(d, )

x has fewer than r spikes in every \.d interval [A. 2 1/f]

Separation: R(2,1)

> 2\, I |
0 1
R(4,2)
ﬁ» >4\, l I
0 1
R(6,3)
— N
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Main results

Recall: spectrum
s=Px+z : 'MWWWM
“N/241 —fe O fo N/2
Solve:

minimize ||s — Px||; subjectto x>0

Theorem: (V.Morgenshter, Candes’14, [1])
Take P = Py or P = Pgyt. Assume x > 0, x € R(2r,7). Then,

“A H < || ” ( )zr
X —X C: ||Z N 0
L= ! 2fc
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Main results

Recall: spectrum
s=Px+1z uﬂﬂ“mmm
—N/2+1 —fc 0 fc N/2
Solve:

minimize ||s — Px||; subjectto x>0

Theorem: (V.Morgenshter, Candes’14, [1])
Take P = Py or P = Pgyt. Assume x > 0, x € R(2r,7). Then,

f—xls < et (o1 )

X —x c-lzlh- | =) -

L T
Converse: (V.Morgenshter, Candes’14, [1])
. 2r—1

For P = Py, no algorithm can do better than ¢ - ||z||; - <2lfc)
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Key ideas

— Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”

[Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”

[Candés and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation
- New construction: multiply “curvy” trigonometric polynomials

= “curvy”
= construction needs no separation
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Dual certificate (noisy case)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

gt) = > dre ™, 0<q(t) <1, q(t;) =0forallt, 7.

k=—f.

S

1 to t3
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Dual certificate (noisy case)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:

gt) = > dre ™, 0<q(t) <1, q(t;) =0forallt, 7.

k=—fc

p\\ /\ N/

ti—% bty t—x tety t—x st

S

m Then, ||x —x||1 < 4z]:1/p-
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h=[h0---hN_1]T=f(—X, T={Z/N:hl<0}
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h=[ho---hy_1]T=%—x, T ={I/N:h <0} supp(x).

23/47



Proof of Lemma

® Set:

h=[hy---hy_1]' =%—x, T ={l/N:h <0}C supp(x).
m Dual vector (contains samples) ¢; = q(I/N) satisfies:
q=0, I/NeT

Pﬂat(l =q, Hquo = ]-7 and { .
q > p, otherwise.
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Proof of Lemma

m Set:
h=[hy---hy_1]' =%—x, T ={l/N:h <0}C supp(x).
m Dual vector (contains samples) ¢; = q(I/N) satisfies:
Ppraq=q, [lafe =1, and {(H “0 uverT
q > p, otherwise.
® On the one hand:
[{a—p/2,h)| = [(P(q - p/2),h)| = [(a = p/2,Ph)|
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< [IPx —sfly + [Is — Px[)s
< 2)|Px — 5]l < 2|z
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Proof of Lemma

® Set:
h=[hy---hy_1]' =%—x, T ={l/N:h <0}C supp(x).
m Dual vector (contains samples) ¢; = q(I/N) satisfies:
=0, I/INeT
Pﬂat(l =q, Hquo = ]-7 and {Ql / .
q > p, otherwise.

m On the one hand:
[(a—p/2,h)| = [(P(q—p/2),h)| = [(q — p/2, Ph)|
< lla=p/2|lc|IPhf; < [[Px —s+s - Px||;
< [[Px —sll1 + [ls — Px|[|y
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m On the other hand:

N-1 N-1
{a—p/2,0)| =D (@ —p/2h| = (@ — p/2)h > plh]1/2.
=0 =0
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Proof of Lemma

m Set:
h=[hy---hy_1]' =%—x, T ={l/N:h <0}C supp(x).
m Dual vector (contains samples) ¢; = q(I/N) satisfies:
Ppraq=q, [lafe =1, and {(H “0 uverT
q > p, otherwise.
® On the one hand:
[{a—p/2,h)| = [(P(q - p/2),h)| = [(a = p/2,Ph)|
< [la = p/2[lc|[Phlly < [[Px —s +s — Px[;
< [IPx —sfly + [Is — Px[)s
< 2)|Px — 5]l < 2|z

m On the other hand:

N-1 N-1
{a—p/2,0)| =D (@ —p/2h| = (@ — p/2)h > plh]1/2.
=0 =0

m Combining: [|h||; < 4]z|1/p-
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Key ideas

- Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”
— [Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”
- [Candés and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation
- New construction: multiply “curvy” trigonometric polynomials

= “curvy”
= construction needs no separation
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Donoho, et al.’92, Fuchs'05, [2, 3]: “Classical" q(t)

a0 = I % leos(2m(t +1/2 — to)) + 1]
toeT

Euler’s formula: . )
6127rt + 67127rt

2
Sparsity implies ¢(t) is low-frequency:

cos(27t) =

fe
g(t) = Y Gre T < S

k=—fe

s < |T‘ € o= % X number of measurements

No square-root bottleneck!
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Donoho et al.’92 [2], Fuchs'05 [3]: “Classical” q(t)

ORI % leos(2m(t + 1/2 — t)) + 1]
toeT

No separation required

Low curvature!

q(t = to) = (t = t0)* = [lx — %l|x < ||zl - N

(Oa 1) -
p

~1/2 1/N 1/2
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Dual certificate (noiseless case, z = 0)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

gt) = > dre ™, 0<q(t) <1, q(t;) =0forallt, 7.

k=—f.

S

1 to t3

m Then, x = x.
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Connection to LASSO (x can be negative here)

minimize ||x||; subject to s=Px

B X = x iff there exists ()

q L null(P) and q € 9||x|)x

m P is orthogonal projection onto the
set of low-freq. trig. polynomials:
q Ll null(P) &

q(t) _ ch:_fc (jkeﬂmrkt

mqclx] &
q(t;) = sign(x;) x; #0
lq(t;)] <1 z; =0

descent cone
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Connection to LASSO (x can be negative here)

minimize ||x||; subject to s=Px

m X = x iff there exists
q L null(P) and q € 9||x|1

m P is orthogonal projection onto the
set of low-freq. trig. polynomials:
q Ll null(P) &

q(t) _ ch:_fc (jkeﬂmrkt

mqclx] &
q(t;) = sign(x;) x; #0
lq(t;)] <1 z; =0

descent cone

+1

sign(z) (xz #0)
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Key ideas

- Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”
- [Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”
— [Candés and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation
- New construction: multiply “curvy” trigonometric polynomials

= “curvy”
= construction needs no separation
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Candes, Fernandez-Granda'12, [4]: “Curvy” q(t)

Z a; K (t — tj) + corrections,
t;€T

K(t)...low-frequency and “curvy”

Separation between zeros required: 7 € R(2,1)

High curvature!

. N\?
alt =) ~ F2(t )% = x =1 < c- 2]l - (—)
o7,

r 4 v

t > 2X. t2 t3
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Comparison of Trigonometric Polynomials

(0,1) “curvy” q(t) = f7t?
a
<

/

Alassical” q(t) ~ t2

_1/2 1/2
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Key ideas

Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”

[Dohono, et al.’92], [Fuchs’05]: construct trigonometric
polynomial that is not “curvy”

[Candés and Fernandez-Granda’12]:, construct trigonometric
polynomial that is “curvy”, but construction needs separation
— New construction: multiply “curvy” trigonometric polynomials

= “curvy”
= construction needs no separation
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New construction: curvature without separation

Partition support: 7 =7, U732, r=2
Regularity: 7 € R(2-2,2) = T, ¢ R(4,1)

t ts ty ty ts
q(t; feo) = qi(t; fe/2) % qa(t; f/2)
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New construction: curvature without separation

Partition support: 7T =T71U73, r=2
Regularity: 7 € R(2-2,2) = T, ¢ R(4,1)

1 T
1 ]
1 ]
1

! 1
1

N ]

\ 1
l

t ts ty ty ts
q(t; fo) = q1(t; fo/2) X qa(t; f/2)

High curvature!

2r N 2r
alt — ) ~ 5 (1) :»Hx—fc||1s(:-uz||1'(2—fc)
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Summation vs. multiplication

Remember: ¢(t) must be frequency-limited to f.!
[Donoho et.al.’92, Fuchs’05]:
1
at) =] 5 lcos(@m(t +1/2~ 1)) + 1]

frequency one
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Summation vs. multiplication

Remember: ¢(t) must be frequency-limited to f.!
[Donoho et.al.’92, Fuchs’05]:
1
at) =] 5 lcos(@m(t +1/2~ 1)) + 1]

frequency one

[Candés, Fernandez-Granda,’12]:
q(t) =Y a;K(t—t;)

tET frequency f.

This work:

r
at) =11 > anK(t —tw)
L —
k=1t;r€Th frequency fc/r
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Complex vs. positive signals

Why do we need x > 07

x>0 x e CV
Interpolate zero on supp. of x Interpolate sign(x) on supp. of x
1 1 q(t:‘)‘:l
> 2, 1/N > 2N,

Does not exist! (Bernstein Th.)
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x(t) x(t) and &(t)

Is the problem hopeless?
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f. fixed, N — oo = SRFqop — o

(%) «(t) and #(t)

+ | |

Is the problem hopeless?

No: we need to be less ambitions!
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f. fixed, N — oo = SRFqop — o

(%) 2(t) and &(t)

+ | |

Is the problem hopeless?

No: we need to be less ambitions!

5(t) = (frow *)() 2(t) = (fuirx)(t) .
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f. fixed, N — oo = SRFqop — o

(%) 2(t) and &(t)

+ | |

Is the problem hopeless?

No: we need to be less ambitions!

5(t) = (frow *)() 2(t) = (fuirx)(t)

hi

Error=|| fui *(x — &) |1

L\ A\
AV 7

SRENEW = A¢/Ani
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Need new tools

Theorem: (V. Morgenshtern, 2019, [5])
Assume z(t) > 0, z(t) € R(2r,r). Then,

)\c 2r
Ifarto =2 < e (32) - 1=l
hi

Can do: all zeros Need: arbitrary pattern {0, +p}
1 1
q(t:) =0
p :
0 t1 ?5.2 ts t4 _ r t to Stn Ly
- SO 0 : t — + + >
~ ~ Ani a
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2D Super-resolution

Theorem: (V. Morgenshtern and E. Candes, 2016, [1])
Take P = Py 9p or P = Py, op. Assume x > 0, x € R(2.38r,r).

Then, )
N r

New: number of spikes is linear in the number of observations
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Improving microscopes

Collaboration with Moerner Lab, C.A. Sing-Long, E. Candes
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Reconstruction of 3D signals from 2D data

Normal PSF

picture from [Pavani and Piston'08]

2D double-helix data
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Reconstruction of 3D signals from 2D data

Double-helix PSF

Normal PSF

picture from [Pavani and Piston'08]

2D double-helix data

1
minimize 5”5 — Px||3 + \o|| diag(w)%||1

subjectto x>0

41/47
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Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved
TFOCS first order solver
millions of variables
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Flexible framework: smooth background separation

minimize s = P(X+Db)[3 + Ao|X]1
subject to x>0
b low freq. trig. polynomial (background)

43 /47



Conclusion

Convex optimization is a near-optimal method
for super-resolution of positive sources

m Flexibility and good practical performance
m Non-asymptotic precise stability bounds

m Rayleigh-regularity is fundamental: separation between spikes is
only one part of the picture
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Connection to Bernstein theorem

Consider: ¢(t) = Zf;_fc gre™ 2™ with [|glloo <1
Then: ||¢||co < 2f.

“Curvy” q(t) has best possible curvature!

Since
q(t;) =0
q(t;) =0
lglls <1

We conclude:
1dlloo < 2fe = 1"l < (2fe)?
= q(t —t;) < (2f)%(t — ;)2

(2fe)* _ 1
N2 SRF?

=q(t;i+1/N) <

46 /47



New tools
Control behavior on separated set
Multiply

q(t) = q1(t) x q2(t)
0 =q'(t3) = ¢} (t3)q2(ts) + q1(ts3)dh(t3)

a(t) —2(t)
s q(t) =0
N\ [i
P ! P !
T ' ' - T > ' ' -
~ Api ~ Ani
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New tools
Control behavior on separated set
Multiply

q(t) = q1(t) x q2(t)
0=q(t3) = ¢i(t3)q2(t3) + q1(t3)dh(t3)

q(t) «—2(t)
s ¢(t) =0
,, = p T
o+ W\ ézt'“ /A T WA it3 /A
— > 2 — > 2\
~ Ani ~ Ani
Sum

a®) =>_"T[ D anK(t—tp)

T k=1t;
k€T frequency fc/r
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