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THE NOBEL PRIZE IN CHEMISTRY 2014
POPULAR SCIENCE BACKGROUND

How the optical microscope became a nanoscope

Eric Betzig, Stefan W. Hell and William E. Moerner are awarded the Nobel Prize in Chemistry 2014 
for having bypassed a presumed scientific limitation stipulating that an optical microscope can never 
yield a resolution better than 0.2 micrometres. Using the fluorescence of molecules, scientists can 
now monitor the interplay between individual molecules inside cells; they can observe disease-related 
proteins aggregate and they can track cell division at the nanolevel.

Red blood cells, bacteria, yeast cells and spermatozoids. When scientists in the 17th century for 
the first time studied living organisms under an optical microscope, a new world opened up before 
their eyes. This was the birth of microbiology, and ever since, the optical microscope has been one 
of the most important tools in the life-sciences toolbox. Other microscopy methods, such as electron 
microscopy, require preparatory measures that eventually kill the cell.

Glowing molecules surpassing a physical limitation
For a long time, however, optical microscopy was held back by a physical restriction as to what size 
of structures are possible to resolve. In 1873, the microscopist Ernst Abbe published an equation 
demonstrating how microscope resolution is limited by, among other things, the wavelength of the 
light. For the greater part of the 20th century this led scientists to believe that, in optical microscopes, 
they would never be able to observe things smaller than roughly half the wavelength of light, i.e., 
0.2 micrometres (figure 1). The contours of some of the cells’ organelles, such as the powerhouse 
mitochondria, were visible. But it was impossible to discern smaller objects and, for instance, to 
follow the interaction between individual protein molecules in the cell. It is somewhat akin to being 
able to see the buildings of a city without being able to discern how citizens live and go about their 
lives. In order to fully understand how a cell functions, you need to be able to track the work of 
individual molecules. 

Abbe’s equation still holds but has been bypassed just the same. Eric Betzig, Stefan W. Hell and 
William E. Moerner are awarded the Nobel Prize in Chemistry 2014 for having taken optical 
microscopy into a new dimension using fluorescent molecules. Theoretically there is no longer any 
structure too small to be studied. As a result, microscopy has become nanoscopy.

ABBE’S DIFFRACTION LIMIT (0.2 µm)

1nm10 nm100 nm1µm10µm100µm1 mm

small moleculeproteinvirusmitochondrionbacteriummammalian cellhairant

N
ob

el
 P

riz
e®

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 th

e 
N

ob
el

 F
ou

nd
at

io
n.

 

Figure 1. At the end of the 19th century, Ernst Abbe defined the limit for optical microscope resolution to roughly half the wavelength 
of light, about 0.2 micrometre. This meant that scientists could distinguish whole cells, as well as some parts of the cell called 
organelles. However, they would never be able to discern something as small as a normal-sized virus or single proteins.[picture from nobelprize.org]
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Looking inside the cell: conventional microscopy

microtubule
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Nobel Prize in Chemistry 2014

Eric Betzig Stefan W. Hell W.E. Moerner

Invention of single-molecule microscopy
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Looking inside the cell

conventional microscopy single-molecule microscopy
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Single molecule microscopy
(basics)
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Controlled photoactivation

Green fluorescent protein (GFP)
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Figure 7: (Dickson et al., 1997, Nature 388, 355-358). GFP in state A is excited to A* and returns 
to A upon photon emission. When I is reached from A, there is no fluorescence until I 
spontaneously moves to A: blinking. When I moves to N, there is no fluorescence until N is 
activated to N* by 405 nm excitation and GFP returns to A. 
 
Moerner’s demonstration of blinking and photo activation opened the road to exploring a vast 
space of GFP mutants for novel optical properties. J. Lippincott-Swartz engineered a GFP 
variant with striking properties (Patterson and Lippincott-Schwartz, 2002). This mutant is 
initially optically inactive. It can, however, be activated by irradiation at 413 nm and then 
displays fluorescence when excited at 488 nm. Eventually, after intense irradiation at 488 nm 
the mutant is irreversibly inactivated by photo bleaching.   
 
When Betzig returned to academic science after his post-near-field exile in private industry, he 
learnt about Lippincott-Schwartz’ mutant and realized that it could possibly solve the problem 
of finding an optimal way to combine sparse sets of fluorophores with distinct spectral 
properties to a dense total set of fluorophores. The simple solution would be to activate a very 
small and thus sparse, random subset of GFP mutant molecules in a biological structure by low-
level irradiation at 413 nm. Subsequent irradiation at 488 nm would then be used to determine 
the positions of the members of the sparse subset at super-resolution, according to Eq. 5 above. 
When the first subset had been irreversibly inactivated by bleaching, a second small subset 
could be activated and the positions of its members determined at high resolution, and so on 
until all subsets had been sampled and used to determine the structure under authentic super-
resolution conditions. This fulfilled both the condition of only a sparse subset being observed at 
a time, and the condition of high-frequency (dense) spatial sampling in order to fulfill the 
Nyqvist and Shannon theorems, as illustrated in Fig. 8. 
 

Energy states [Dickson et.al. ’97]

State A is excited to A∗ and returns to A upon photon emission

When I is reached from A there is no fluorescence until I
spontaneously moves to A (blinking)

When I moves to N there is no fluorescence until N is activated
by 405nm light and GFP returns to A
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Photoactivated localization microscopy (PALM) Setup

[picture from ZEISS]
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PALM Process

Step 1

Step 3. Algorithm needed.

Step 2

Step 4
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Antibodies: attach fluorescent molecules to the structure

All off

All on Detector

Cannot resolve the structure!
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“Blinking” molecules: sparsity

Frame 1

Locate centers of “Gaussian” blobs (parametric estimation)

Combine ∼ 10000 frames.

The structure is now resolved!
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“Blinking” molecules: sparsity

Frame 1 Frame 2 Frame 3

Locate centers of “Gaussian” blobs (parametric estimation)
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“Blinking” molecules: sparsity

Frame 2

Locate centers of “Gaussian” blobs (parametric estimation)

Combine ∼ 10000 frames.

The structure is now resolved!
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Next Frontier: image dynamical processes

Imaging ∼ 10000 frames is slow

Can we make data acquisition faster?

Image ∼ 2500 frames with 4 times more molecules per frame?

parametric estimation works 4 times more active molecules
⇒ parametric estimation

does not work

Need powerful super-resolution algorithm!
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Theory

Which algorithm?
Performance guarantees?

Fundamental limits?
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Mathematical model (discrete 1D setup for simplicity)

0 1

Object

x(t) =
∑
i

xiδ(t− ti), xi ≥ 0

0 1

λc = 1/fc
Detector

s(t) =

∫
flow(t− t′)x(t′)dt′

flow(t) =
1

2fc

(
sin(2πfct)

πt

)2
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Mathematical model (discrete 1D setup for simplicity)

P = FHP̂F

DFT:

[F]k,l =
1√
N
e−i2πkl/N , −N/2 + 1 ≤ k ≤ N/2, 0 ≤ l ≤ N − 1

Spectrum:
P̂ = diag([p̂−N/2+1 · · · p̂N/2]T)

Flat:

p̂k =

{
1, k = fc, . . . , fc,

0, otherwise

Triangular:

p̂k =

{
1− |k|

fc+1 , k = −fc, . . . , fc
0, otherwise

Width of the convolution kernel: λc , 1/fc 16 / 47



Super-resolution factor and stability

x = [x0 · · ·xN−1]
T

−N/2 + 1 −fc 0 fc N/2

Triangular spectrum

−N/2 + 1 −fc 0 fc N/2

Flat spectrum

s = Px+ z

SRF , N/(2fc)

Stability: ‖x− x̂‖
?
≤ ‖z‖ · (amplification factor)
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Classical resolution criteria: separation is about λc

Sparrow criterionAbbe criterionRayleigh criterion

1.22�c �c 0.94�c
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Rayleigh-regularity: x ∈ R(d, r)

x has fewer than r spikes in every λcd interval [λc , 1/fc]

0 1

≥ 2λc

Separation: R(2, 1)

0 1

λc ≥ 4λc

R(4, 2)

0 1

≥ 6λc

R(6, 3)
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Main results

Recall:

s = Px+ z
−N/2 + 1 −fc 0 fc N/2

spectrum

Solve:
minimize ‖s−Px̂‖1 subject to x̂ ≥ 0

Theorem: (V.Morgenshter, Càndes’14, [1])

Take P = Ptri or P = Pflat. Assume x ≥ 0, x ∈ R(2r, r). Then,

‖x̂− x‖1 ≤ c · ‖z‖1 ·
(
N

2fc

)2r

.

Converse: (V.Morgenshter, Càndes’14, [1])

For P = Ptri, no algorithm can do better than c · ‖z‖1 ·
(
N
2fc

)2r−1
.
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Key ideas
→ Duality theory: to prove stability we need a low-frequency

trigonometric polynomial that is “curvy”

- [Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”

- [Candès and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation

- New construction: multiply “curvy” trigonometric polynomials

“curvy”
construction needs no separation
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Dual certificate (noisy case)

T is the support of x

Suppose, we can construct a low-frequency trig. polynomial:

q(t) =

fc∑
k=−fc

q̂ke
−i2πkt, 0 ≤ q(t) ≤ 1, q(ti) = 0 for all ti ∈ T .

t1 t2 t3

1

Then, ‖x̂− x‖1 ≤ 4‖z‖1/ρ.
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Proof of Lemma

Set:
h = [h0 · · ·hN−1]

T = x̂− x, T = {l/N : hl < 0}

⊂ supp(x).
Dual vector (contains samples) ql = q(l/N) satisfies:

Pflatq = q, ‖q‖∞ = 1, and

{
ql = 0, l/N ∈ T
ql > ρ, otherwise.

On the one hand:

|〈q− ρ/2,h〉| = |〈P(q− ρ/2),h〉| = |〈q− ρ/2,Ph〉|
≤ ‖q− ρ/2‖∞‖Ph‖1 ≤ ‖Px− s+ s−Px̂‖1
≤ ‖Px− s‖1 + ‖s−Px̂‖1
≤ 2‖Px− s‖1 ≤ 2‖z‖1.

On the other hand:

|〈q− ρ/2,h〉| =
∣∣∣∣∣
N−1∑
l=0

(ql − ρ/2)hl
∣∣∣∣∣ =

N−1∑
l=0

(ql − ρ/2)hl ≥ ρ‖h‖1/2.

Combining: ‖h‖1 ≤ 4‖z‖1/ρ.
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≤ ‖q− ρ/2‖∞‖Ph‖1 ≤ ‖Px− s+ s−Px̂‖1
≤ ‖Px− s‖1 + ‖s−Px̂‖1
≤ 2‖Px− s‖1 ≤ 2‖z‖1.

On the other hand:

|〈q− ρ/2,h〉| =
∣∣∣∣∣
N−1∑
l=0

(ql − ρ/2)hl
∣∣∣∣∣ =

N−1∑
l=0

(ql − ρ/2)hl ≥ ρ‖h‖1/2.

Combining: ‖h‖1 ≤ 4‖z‖1/ρ.
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Key ideas
- Duality theory: to prove stability we need a low-frequency

trigonometric polynomial that is “curvy”

→ [Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”

- [Candès and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation

- New construction: multiply “curvy” trigonometric polynomials

“curvy”
construction needs no separation
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Donoho, et al.’92, Fuchs’05, [2, 3]: “Classical” q(t)

q(t) =
∏
t0∈T

1

2
[cos(2π(t+ 1/2− t0)) + 1] .

Euler’s formula:

cos(2πt) =
ei2πt + e−i2πt

2

Sparsity implies q(t) is low-frequency:

q(t) =

fc∑
k=−fc

q̂ke
−i2πkt if |T | ≤ fc

s ≤
∣∣T ∣∣ ≤ fc = 1

2 × number of measurements

No square-root bottleneck!
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Donoho et al.’92 [2], Fuchs’05 [3]: “Classical” q(t)

q(t) =
∏
t0∈T

1

2
[cos(2π(t+ 1/2− t0)) + 1] .

No separation required

Low curvature!

q(t− t0) ≈ (t− t0)2 ⇒ ‖x− x̂‖1 ≤ ‖z‖1 ·N2

−1/2 1/N 1/2

(0, 1)

ρ
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Dual certificate (noiseless case, z = 0)

T is the support of x

Suppose, we can construct a low-frequency trig. polynomial:

q(t) =

fc∑
k=−fc

q̂ke
−i2πkt, 0 ≤ q(t) ≤ 1, q(ti) = 0 for all ti ∈ T .

t1 t2 t3

1

Then, x̂ = x.
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Connection to LASSO (x can be negative here)

minimize ‖x̂‖1 subject to s = Px̂

x̂ = x iff there exists
q ⊥ null(P) and q ∈ ∂‖x‖1

P is orthogonal projection onto the
set of low-freq. trig. polynomials:
q ⊥ null(P)⇔

q(t) =
∑fc

k=−fc q̂ke
−i2πkt

q ∈ ∂‖x‖1 ⇔{
q(ti) = sign(xi) xi 6= 0

|q(ti)| ≤ 1 xi = 0

descent cone

null(A)

row(A)

polar cone

null(P)

raw(P)

+1

-1

sign(x) (x 6= 0)
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Key ideas
- Duality theory: to prove stability we need a low-frequency

trigonometric polynomial that is “curvy”

- [Dohono, et al.’92, Fuchs’05] construct trigonometric
polynomial that is not “curvy”

→ [Candès and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation

- New construction: multiply “curvy” trigonometric polynomials

“curvy”
construction needs no separation
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Candès, Fernandez-Granda’12, [4]: “Curvy” q(t)

q(t) =
∑
tj∈T

ajK(t− tj) + corrections,

K(t) . . . low-frequency and “curvy”

Separation between zeros required: T ∈ R(2, 1)

High curvature!

q(t− ti) ≈ f2
c (t− ti)2 ⇒ ‖x− x̂‖1 ≤ c · ‖z‖1 ·

(
N

2fc

)2

t1 t2 t3

ρ

≥ 2λc
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Comparison of Trigonometric Polynomials

−1/2 1/2

(0, 1)

“classical” q(t) ≈ t2

“curvy” q(t) ≈ f2
c t

2
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Key ideas
- Duality theory: to prove stability we need a low-frequency

trigonometric polynomial that is “curvy”

- [Dohono, et al.’92], [Fuchs’05]: construct trigonometric
polynomial that is not “curvy”

- [Candès and Fernandez-Granda’12]:, construct trigonometric
polynomial that is “curvy”, but construction needs separation

→ New construction: multiply “curvy” trigonometric polynomials

“curvy”
construction needs no separation
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New construction: curvature without separation

Partition support: T = T1 ∪ T2, r = 2

Regularity: T ∈ R(2 · 2, 2)⇒ Ti ∈ R(4, 1)

t1 t2 t3 t4 t5

q1(t) q2(t)

q(t; fc) = q1(t; fc/2)× q2(t; fc/2)

High curvature!

q(t− ti) ≈
f2r
c

r2r
(t− ti)2r ⇒ ‖x− x̂‖1 ≤ c · ‖z‖1 ·

(
N

2fc

)2r
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Summation vs. multiplication

Remember: q(t) must be frequency-limited to fc!

[Donoho et.al.’92, Fuchs’05]:

q(t) =
∏
tj∈T

1

2
[cos(2π(t+ 1/2− tj)) + 1]︸ ︷︷ ︸

frequency one

[Candès, Fernandez-Granda,’12]:

q(t) =
∑
tj∈T

ajK(t− tj)︸ ︷︷ ︸
frequency fc

This work:

q(t) =

r∏
k=1

∑
tjk∈Tk

ajkK(t− tjk)︸ ︷︷ ︸
frequency fc/r

34 / 47



Summation vs. multiplication

Remember: q(t) must be frequency-limited to fc!

[Donoho et.al.’92, Fuchs’05]:

q(t) =
∏
tj∈T

1

2
[cos(2π(t+ 1/2− tj)) + 1]︸ ︷︷ ︸

frequency one

[Candès, Fernandez-Granda,’12]:

q(t) =
∑
tj∈T

ajK(t− tj)︸ ︷︷ ︸
frequency fc

This work:

q(t) =

r∏
k=1

∑
tjk∈Tk

ajkK(t− tjk)︸ ︷︷ ︸
frequency fc/r

34 / 47



Summation vs. multiplication

Remember: q(t) must be frequency-limited to fc!

[Donoho et.al.’92, Fuchs’05]:

q(t) =
∏
tj∈T

1

2
[cos(2π(t+ 1/2− tj)) + 1]︸ ︷︷ ︸

frequency one

[Candès, Fernandez-Granda,’12]:

q(t) =
∑
tj∈T

ajK(t− tj)︸ ︷︷ ︸
frequency fc

This work:

q(t) =

r∏
k=1

∑
tjk∈Tk

ajkK(t− tjk)︸ ︷︷ ︸
frequency fc/r

34 / 47



Summation vs. multiplication

Remember: q(t) must be frequency-limited to fc!

[Donoho et.al.’92, Fuchs’05]:

q(t) =
∏
tj∈T

1

2
[cos(2π(t+ 1/2− tj)) + 1]︸ ︷︷ ︸

frequency one

[Candès, Fernandez-Granda,’12]:

q(t) =
∑
tj∈T

ajK(t− tj)︸ ︷︷ ︸
frequency fc

This work:

q(t) =

r∏
k=1

∑
tjk∈Tk

ajkK(t− tjk)︸ ︷︷ ︸
frequency fc/r

34 / 47



Complex vs. positive signals

Why do we need x ≥ 0?

x ≥ 0

Interpolate zero on supp. of x

t1 t2 t3 t4

� 2�c

⇢
0

1

1/N

x ∈ CN

Interpolate sign(x) on supp. of x

t1 t2 t3 t4

� 2�c

⇢

1
q(t3) = 1

�1
1/N

Does not exist! (Bernstein Th.)
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Continuous setup
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fc fixed, N →∞ ⇒ SRFOLD →∞
x(t) x(t) and x̂(t)

Is the problem hopeless?

No: we need to be less ambitions!

λc

s(t) = (flow ? x)(t)
λhi

x̂(t) = (fhi ? x)(t)

Error=‖fhi ?(x− x̂)‖1

SRFNEW = λc/λhi
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Need new tools

Theorem: (V. Morgenshtern, 2019, [5])

Assume x(t) ≥ 0, x(t) ∈ R(2r, r). Then,

‖fhi ?(x− x̂)‖1 ≤ c ·
(
λc
λhi

)2r

· ‖z(t)‖1.

Can do: all zeros

t1 t2 t3 t4

⇠ �hi

� 2�c

⇢

0

1

Need: arbitrary pattern {0,+ρ}

t1 t2 t3 t4

⇠ �hi

� 2�c

⇢

0

1

q0(ti) = 0
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2D Super-resolution

� 2.38�c

R(2.38, 2)

Theorem: (V. Morgenshtern and E. Candès, 2016, [1])

Take P = Ptri,2D or P = Pflat,2D. Assume x ≥ 0, x ∈ R(2.38r, r).
Then,

‖x̂− x‖1 ≤ c ·
(
N

2fc

)2r

δ.

New: number of spikes is linear in the number of observations
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Improving microscopes
Collaboration with Moerner Lab, C.A. Sing-Long, E. Candès
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Reconstruction of 3D signals from 2D data

z

Double-helix PSF

Normal PSF
picture from [Pavani and Piston'08] 

2D double-helix data

minimize
1

2
‖s−Px̂‖22 + λσ‖ diag(w)x̂‖1

subject to x̂ ≥ 0

P contains double-helix PSF slices
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Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved
TFOCS first order solver

millions of variables
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Flexible framework: smooth background separation

minimize 1
2‖s−P(x̂+ b)‖22 + λσ‖x̂‖1

subject to x̂ ≥ 0
b low freq. trig. polynomial (background)
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Conclusion

Convex optimization is a near-optimal method
for super-resolution of positive sources

Flexibility and good practical performance

Non-asymptotic precise stability bounds

Rayleigh-regularity is fundamental: separation between spikes is
only one part of the picture
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Backup slides
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Connection to Bernstein theorem

Consider: q(t) =
∑fc

k=−fc q̂ke
−i2πkt with ‖q‖∞ ≤ 1

Then: ‖q′‖∞ ≤ 2fc

“Curvy” q(t) has best possible curvature!

Since

q(ti) = 0

q′(ti) = 0

‖q‖∞ ≤ 1

We conclude:

‖q′‖∞ ≤ 2fc ⇒ ‖q′′‖∞ ≤ (2fc)
2

⇒ q(t− ti) ≤ (2fc)
2(t− ti)2

⇒ q(ti + 1/N) ≤ (2fc)
2

N2
=

1

SRF2
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New tools

1 Control behavior on separated set

2 Multiply

q(t) = q1(t)× q2(t)

0 = q′(t3) = q′1(t3)q2(t3) + q1(t3)q
′
2(t3)

t1 t2 t3 t4

q1(t) q2(t)

⇠ �hi

� 2�c

⇢

0

1

t1 t2 t3 t4

⇠ �hi

� 2�c

⇢

0

1

q0(ti) = 0

3 Sum

q(t) =
∑
r

r∏
k=1

∑
tjk∈Tk

ajkK(t− tjk)︸ ︷︷ ︸
frequency fc/r
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