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Solutions to problem set 1
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Solver: Prof. Veniamin Morgenshtern

Problem 1: Overcomplete expansion in R?

1. Consider the vectors

1 0 1
912[0}, 622[1}, €3 =€ — €y = [_1]~

Our goal is to find vectors €1, €, €3 such that

=T
€1
X = <X, él> e + <X,é2> ey + <X, é3> e3 = [el e 83] é;— X.
——— |
A &5

In order to find these vectors, we are looking for a right inverse of the matrix A. One possible
right inverse can be found by noting that

AAT(AAT) =1
h
right inverse

First we calculate

1 0
1 0 1 2 -1
N R
0 1 -1 1 —1 -1 2
and the inverse .
Ty-1_ 1]2 1
(AA)T =3 [1 2
and finally
er 2 1
| =AT(AAT) =211 2
Al 1 -1

The vectors €], €}, & are given by

o[- B - [0

Comparing to the given set of vectors €1, €9, €3 we find

. 2 " -1 - -1
e =2e = gl €&="e =] |, e=—e=|,|.



It should be emphasized that the right inverse is not unique: the system of equations

{10 1]‘22_[10]
01 -1 e f 01

——

B

has infinitely many solutions of the form

1-X —v

B = A 14+~
A Y

for any A,y € R. Any such matrix B is a valid right inverse of A, which generates in general
different set of vectors €1, €, €3.

2. Assume that x can be written in the form

~ ~ _ ~ T 1 0 /T
x = (x,€])é + (x,e5) & = [& &) [25] X = [_1 \@] [e}T] X.

A is a square, non-singular matrix and has, therefore, a unique inverse

=5 [C = Lve e = o] =t men =

We conclude that x can be represented in the form
X = <X, e1> e + <X, 62> €9

and this expansion is unique.

Problem 2: Equality in the Cauchy-Schwarz inequality

First, here is a proof of Cauchy-Schwarz inequality. Assume that g # 0, otherwise the inequality
is trivially true. Define A = (f, g) /||g||> Then:

0<|If = Agl?
=(f, f) — (g, f) = (£, Ag) + (\g, Ag)

= £I? = Mg, f) = X (£, 9) + A\\* (g, 9)
IR = AL gy — A% (frg) + AN g
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Next, let’s solve the problem. Let’s assume || f|| = |lg|]| = 1 and (f, g) = 1, then from

(f—9,9)=(f9)—lgll=0

we conclude that f — ¢ is orthogonal to g. Applying Pythagoras theorem to f = f — g + g we can
write

IFI? = I1f = gll* + llgl”
= |If—gl*=0
= f=gq.

In the general case ||f]| # 1 and ||g|| # 1, we can do the following

[(F: 91 = 17119l

e 9>‘ _
:‘anu’um !
ei¢f 9>_
<Hf\|’\gH =1

define f = ewﬁ and § = ﬁ. Now we have the first case again

We can multiply f by e'® such that

Problem 3: Useful identities in a Hilbert Space

1. Parallelogram law

If+glP+1f—gll>=(F+9.f+9)+{f—9.f—9)
={fif+to+lgf+a+{f.f—9)—(9.f-9)
={,.H+{f,9)+(9. N+ 9.9 +{f,.)—{f.9)— (9. ) +(9,9)
=2[I£1*+2lgl* + (f.9) + (9, /) = (f,9) — (. 9)"
= 2[|£1I? + 2llgl* + 2R(f, g) — 2R(f, 9)
=2(IF1% + llgll*)



2. Polarization identity
1
(0o = s g4 1 g2 = 1L g2
23 <<f+g,f+g>—<f—gvf—g)+i Kf +g,f+g> <{—g,{—g>D

= 2L + gl + 25, g) — 11— gl + 28¢5, 0
i [P+ N9l =545, ) + g 1) + LI~ gl — i (F0) + g, 1))
= (4R(f.g) + 43(7,9)) = (£, 9)

Problem 4: Discrete Fourier Transform (DFT) as a signal expansion

Define the basis functions

They form an ONS as shown by

ply = ko 1 ! 1=
<€k7 el> _ Z ek[n}el[n]* _ €i27rﬁn e—z?ﬂﬁn _ = elWﬂ(k n
n=0 n=0 \/ﬁ \/ﬁ N k=0
1 i27r(k—l)71 o
_ 762(]6 l>27r 1 _07 k#l
i ZN '1=1, k=1

We have N functions in CV that form an ONS, thus, they form an ONB. Therefore every

signal can be expressed as
N—

= (frer)erln

k=0

)_l

where N
(fer) = Zf nleg[n _\lﬁkg e 2N ”:f[n]

Therefore we see that the inverse of the DF'T is given by

N-1

fﬂ \;»Z.]/c\ z27rn

k=0

From the lecture we know that an ONB is a tight and exact frame with frame bounds A =
B=1.

Problem 5: Unitary transformation of a frame

Condition that {gj}je 7 1s a frame means that there exist A > 0 and B < oo such that for
any f € H

AIFIP <D 1KF 90 < BIFIP.
j



Then we have
S UL UgH P =Y (U £, < B|Uf|?
J J
< B|U*|I?|| £|”
= B| fl%,

which establishes the upper frame bound. Next,

AllfI? = A(If, f) = AQUU'f, f) = AU F,UF) = AU FIIP <D0 F g0 =D I(f, Ugy)I%,
J J

which establishes the lower frame bound. Therefore, {Ug;} e 7 is a frame for # with the same
frame bounds A and B. We have used in the proof the properties of a unitary operator U:
UU* =U*U =T1and |U|| = ||U*|| = 1.

Problem 6: Redundancy of a frame

(a) We have that for every f € CM
N
AFIP =D I(f 8. (1)
j=1

Now let {ey,...,en} be an ONB for CM and expand g; as g; = S, crjek. By
Parseval’s identity,

M

1=|gi|* = lex;l*, forall je{1,...,N}. (2)
k=1

Taking f to be e;,1 € {1,..., M} and using equation we obtain

N N

N
A= "eng)? = e =D leyl™ (3)
7j=1

j=1 j=1

From we conclude that Zj‘il Zszl }cij = N; form we at the same time have
ij‘il ch\;l ‘ckj}Q = M A. Combining these two expressions together we conclude that

(b) For any f € CM we have that
N
AllEl* < Z (£.g))[* < BIIf*. (4)
Taking f = e;,1 € {1,..., M} we obtain therefore that
N N
D oE )P = eyl (5)
j=1 Jj=1

5



Now, from (H) it follows that AM||f||> < M 210 [(f,g;)|> < MB|f||* from (F), on the
other hand, we conclude M Y7 |(F, g;)|* = X300, 3277, [{F,85)[” = 2200, 00 |ey|? =

N M N
Zj:l 2121 ’Cle = Zj:1||gj||2 = N.
‘We now see that
AM < N < BM

and so

A< <B.

==

Problem 7: Frame bounds

If one removes elements from an ONB, and takes f as one of those elements, it is seen that
A=0and B =1 < oco. If one adds countably infinite copies of a single basis element to the
ONB to form a frame, it is seen that A =1 > 0 and B = +o00. Obviously, both sequences
are not frames since A = 0 or B = 400 are not permissible frame bounds.

Problem 8: Tight frame as an orthogonal projection of an ONB
{Pe; }é\le spans H’, but it is not a linearly independent set since N > M and is therefore not

a basis for H'. Now we have for every f € H’

N N

DI Pe) P = [(P*f e)) > = Y [(PFe))|* = |[PE|* = |f]*

Jj=1 J=1 J=1

where in the second equality we used the fact that orthogonal projections are self-adjoint and
in the last equation the fact that for all f € H' we have Pf = f. We conclude that {Pe; }é\le
is a tight frame for H' with frame bound 1.

Note: Pf = f for all f € H since P is onto H/, i.e., there exists h € H, not necessarily
unique, such that f = Ph, and so Pf = PPh = Ph = f. (P is idempotent)



