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Problem 1: Eigenvalue decomposition

1. Any hermitian matrix T can be written as T = UΛUH, where U is unitary (UH = U−1)

T(I + T)−1 = UΛUH(I + UΛUH)−1

= UΛUH(U(UHIU + Λ)UH)−1

= UΛUH(UH)−1(I + Λ)−1U−1

= UΛ(I + Λ)−1U−1

= U


λ1

(1+λ1)

. . .
λn

(1+λn)

UH.

We see that T(I + T)−1 has the same eigenvectors as T and eigenvalues λ̃i = λi
1+λi

.

2. In general it is not possible to say anything about the eigenvalues of a product of arbitrary
N × N hermitian matrixes with known eigenvalues. To see this consider the two sets of
matrices

{A,B1} =

{[
1 0
0 2

]
,

[
1 0
0 3

]}
and

{A,B2} =

{[
1 0
0 2

]
,

[
3 0
0 1

]}
.

The matrices B1 and B2 have the same eigenvalues. However, the products

AB1 =

[
1 0
0 6

]
and

AB2 =

[
3 0
0 2

]
have different eigenvalues.

3. The fact that S and T have the same eigenvectors, implies that there is a unitary matrix U
such that S = UΛSUH and T = UΛTUH. Therefore,

TS = UΛT UHU︸ ︷︷ ︸
I

ΛSUH

= UΛTΛSUH.
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We conclude that TS has the same eigenvectors as T and S but with eigenvalues λTS = λTλS .

At this point it is instructive to go back to the counter example in the previous point and
realize that the order of eigenvectors w.r.t. the order of eigenvalues matters.

4. (a) Spectral decomposition for circulant matrices: C = FΛFH where

F = [f1, . . . , fn], fk =
1√
n


βk0

βk1

...

βk(n−1)

 , β = ei2π/n, λk =
√
nfHk c,

c =


c0
c1
...

cn−1

 .
Proof:

(Cfk)l =
1√
n

n−1∑
m=0

c[l−m]β
km (where [l −m] = (l −m) mod n)

=
1√
n

(c0β
kl + c1β

k[l−1] + . . .+ cn−1β
k[l−(n−1)])

=
1√
n

n−1∑
m′

cm′β
k[l−m′]

=
1√
n

n−1∑
m′

cm′β
k(l−m′)

=
βkl√
n

n−1∑
m′=1

cm′β
−km′

= λk
βkl√
n

= λk(fk)l

Therefore, Cfk = λkfk, where λk =
√
nfHk c. We see that all circulant matrices have the

same eigenvectors.
Note: The fourth equality follows from

a mod n = a−
⌊a
n

⌋
n

⇒ βk[l−m
′] = βk((l−m

′)−b l−m
′

n
cn) = βk(l−m

′) β−kb
l−m′
n
cn︸ ︷︷ ︸

=1

.

(b) C1 = FΛ1F
H and C2 = FΛ2F

H. Note that F is unitary since its columns are orthonor-
mal.

C1C2 = FΛ1Λ2F
H

C2C1 = FΛ2Λ1F
H

Since diagonal matrices Λ1 and Λ2 commute ⇒ C1C2 = C2C1.
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Problem 2: Bandpass filter and orthogonal complement

Let

A ,
{
{ak}k∈Z ∈ l2 : â(f) = 0 for all f ∈ [−1/2, 1/2] \ [f1, f2]

}
B ,

{
{bk}k∈Z ∈ l2 : b̂(f) = 0 for all f ∈ [f1, f2]

}
,

where â(f) =
∑∞

k=−∞ ake
−i2πkf and b̂(f) =

∑∞
k=−∞ bke

−i2πkf denote the DTFTs of {ak}k∈Z and

{bk}k∈Z, respectively. We need to show that A⊥ = B.

First we show that A⊥ ⊂ B. Indeed, take {ck}k∈Z ∈ A⊥. By definition of the orthogonal comple-
ment, {ck}k∈Z is orthogonal to every sequence in A, i.e.,

〈{ck}k∈Z, {ak}k∈Z〉 = 0 for all {ak}k∈Z ∈ A. (1)

Using Parseval’s theorem, we compute the inner product 〈{ck}k∈Z, {ak}k∈Z〉 in the frequency do-
main as follows

〈{ck}k∈Z, {ak}k∈Z〉 =

∞∑
k=−∞

cka
∗
k =

∫ 1/2

−1/2
ĉ(f) â∗(f)df,

where ĉ(f) =
∑∞

k=−∞ cke
−i2πkf . By definition of A, it therefore follows that condition (1) can only

be satisfied if ĉ(f) = 0 for all f ∈ [f1, f2]. Therefore, by definition of B, {ck}k∈Z ∈ B, which implies
A⊥ ⊂ B.

Next, we show that B ⊂ A⊥. Take {ck}k∈Z ∈ B. For every {ak}k∈Z ∈ A, using Parseval’s theorem,
we have

〈{ck}k∈Z, {ak}k∈Z〉 =

∞∑
k=−∞

cka
∗
k =

∫ 1/2

−1/2
ĉ(f) â∗(f)df = 0,

where the last equality follows because â(f) and ĉ(f) are supported on disjoint intervals. Therefore,
{ck}k∈Z ∈ A⊥, which implies B ⊂ A⊥. By A⊥ ⊂ B we therefore get A⊥ ⊂ B ⊂ A⊥ and hence
A⊥ = B.

Problem 3: Tight frames

1. Take x = [x0 · · ·xM−1]T ∈ CM and compute

KM−1∑
k=0

|〈x,gk〉|2 =

KM−1∑
k=0

∣∣∣∣∣
M−1∑
n=0

xne
−i2πkn/(KM)

∣∣∣∣∣2
=

KM−1∑
k=0

M−1∑
n=0

M−1∑
n′=0

xnx
∗
n′e
−i2πkn/(KM)ei2πkn

′/(KM)

=
M−1∑
n=0

M−1∑
n′=0

xnx
∗
n′

KM−1∑
k=0

e
i2πk
KM

(n′−n)

︸ ︷︷ ︸
=

KM, n = n′

0, n 6= n′

=
M−1∑
n=0

KM |xn|2 = KM‖x‖2. (1)
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Since (1) holds for all x ∈ CM, {gk}0≤k≤KM−1 is a frame for CM with upper and lower frame
bound equal to KM , i.e., it is a tight frame with frame bound A = KM .

2. Take x(t) ∈ L2([0, T ]) and compute

∞∑
k=−∞

|〈x, gk〉|2 =
∞∑

k=−∞

∫ ∞
−∞

x(t)e−i2πkt/Tdt

∫ ∞
−∞

x∗(t′)ei2πkt
′/Tdt′

=

∫ ∞
−∞

∫ ∞
−∞

x(t)x∗(t′)
∞∑

k=−∞
ei2πk

(t′−t)
T

︸ ︷︷ ︸
=T

∑∞
k=−∞ δ(t′−t−kT )

dt′dt

(a)
=

∞∑
k=−∞

T

∫ ∞
−∞

x(t)x∗(t+ kT )dt

(b)
=

∞∑
k=−∞

T

∫ T

0
x(t)x∗(t+ kT )dt

(c)
= T

∫ T

0
x(t)x∗(t)dt

(d)
= T 〈x, x〉 = T‖x‖2, (2)

where in (a) we used the sifting property of the δ-function and in (b), (c), and (d) we used
that x(t) ∈ L2([0, T ]). Since (2) holds for all x(t) ∈ L2([0, T ]), {gk(t)}k∈Z is a frame for
L2([0, T ]) with upper and lower frame bound equal to T , i.e., it is a tight frame with frame
bound A = T .

Problem 4: Sampling theory I

1. Take {ak}k∈Z ∈ R(T). By definition of A, we have

A{ak}k∈Z =
∞∑

k=−∞
akhLP

(
t

T
− k
)
.

The result now follows immediately by noting that

T̃†{ak}k∈Z =

∞∑
k=−∞

akg̃k(t)

where g̃k(t) = Tgk(t) = hLP
(
t
T − k

)
.
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2. Take {bk}k∈Z ∈ R(T)⊥. Then,

A{bk}k∈Z =
∞∑

k=−∞
bkhLP

(
t

T
− k
)

=

∞∑
k=−∞

bk

∫ 1/2

−1/2
ĥLP(f)ei2πf(t/T−k)df

=

∫ 1/2

−1/2
ĥLP(f)ei2πtf/T

∞∑
k=−∞

bke
−i2πkf

︸ ︷︷ ︸
b̂(f)

df

=

∫ 1/2

−1/2
b̂(f)ĥLP(f)ei2πtf/Tdf

= 0, (1)

where the last equality follows because b̂(f) is supported on the set [−1/2,−BT ] ∪ [BT, 1/2]
and ĥLP(f) is supported on the set [−BT,BT ].

3. Take {ck}k∈Z ∈ l2. We can write {ck}k∈Z = {ak}k∈Z + {bk}k∈Z with {ak}k∈Z ∈ R(T) and
{bk}k∈Z ∈ R(T)⊥. It was proven in 1. and 2. above that A{ak}k∈Z = T̃†{ak}k∈Z and
A{bk}k∈Z = 0. Therefore,

A{ck}k∈Z = A{ak}k∈Z + A{bk}k∈Z︸ ︷︷ ︸
0

= T̃†{ak}k∈Z.

Since {ak}k∈Z ∈ R(T) and P is the orthogonal projection operator onto R(T), we have
P{ak}k∈Z = {ak}k∈Z. Similarly, since {bk}k∈Z is in the orthogonal complement of R(T), we
have P{bk}k∈Z = 0. Therefore,

T̃†P{ck}k∈Z = T̃† P{ak}k∈Z︸ ︷︷ ︸
{ak}k∈Z

+T̃† P{bk}k∈Z︸ ︷︷ ︸
0

= T̃†{ak}k∈Z.

We conclude that A = T̃†P, as required.

Problem 5: Sampling theory II

The proof is accomplished in three steps.

1. Take {ak}k∈Z ∈ R(T)⊥. We have,

B{ak}k∈Z
(a)
=

∞∑
k=−∞

akhout

(
t

T
− k
)

(b)
=

∫ 1/2

−1/2
â(f)ĥout(f)ei2πtf/Tdf

(c)
=

∫ −BT
−1/2

â(f)arb(f)ei2πtf/Tdf +

∫ 1/2

BT
â(f)arb(f)ei2πtf/Tdf,
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where (a) follows by definition of B, (b) follows by the same steps as the solution of item 2
in Problem 4, and in (c) we used that â(f) = 0 for f ∈ [−BT,BT ]. Similarly,

M{ak}k∈Z
(a)
=

∞∑
k=−∞

akhM

(
t

T
− k
)

(b)
=

∫ 1/2

−1/2
â(f)ĥM (f)ei2πtf/Tdf

(c)
=

∫ −BT
−1/2

â(f)arb(f)ei2πtf/Tdf +

∫ 1/2

BT
â(f)arb(f)ei2πtf/Tdf,

where (a) follows by definition of M, (b) follows by the same steps as in in solution of item
2 in Problem 4, and in (c) we used that â(f) = 0 for f ∈ [−BT,BT ]. We conclude that
B{ak}k∈Z = M{ak}k∈Z.

2. Next, take {bk}k∈Z ∈ R(T). Then,

B{bk}k∈Z =
∞∑

k=−∞
bkhout

(
t

T
− k
)

=

∫ 1/2

−1/2
b̂(f)ĥout(f)ei2πtf/Tdf

= 0,

where the third equality follows because b̂(f) is supported on the set [−BT,BT ] and ĥout(f)
is supported on the set [−1/2,−BT ] ∪ [BT, 1/2].

3. Finally, take {ck}k∈Z ∈ l2. We can write {ck}k∈Z = {ak}k∈Z +{bk}k∈Z with {ak}k∈Z ∈ R(T)⊥

and {bk}k∈Z ∈ R(T). It was shown in item 1 above that B{ak}k∈Z = M{ak}k∈Z and in item
2 above that B{bk}k∈Z = 0 so that

B{ck}k∈Z = B{ak}k∈Z + B{bk}k∈Z︸ ︷︷ ︸
0

= M{ak}k∈Z. (1)

Since {ak}k∈Z is in the orthogonal complement of R(T) and P is the orthogonal projection
operator ontoR(T), we have P{ak}k∈Z = 0, or, equivalently, (Il2−P){ak}k∈Z = {ak}k∈Z. Sim-
ilarly, since {bk}k∈Z ∈ R(T), we have P{bk}k∈Z = {bk}k∈Z, or, equivalently (Il2−P){bk}k∈Z =
0. Therefore,

M(Il2 − P){ck}k∈Z = M (Il2 − P){ak}k∈Z︸ ︷︷ ︸
{ak}k∈Z

+M (Il2 − P){bk}k∈Z︸ ︷︷ ︸
0

= M{ak}k∈Z. (2)

Comparing (1) and (2), we can therefore conclude that B = M(Il2 − P), as required.

Problem 6: Weyl-Heisenberg (WH) frame in finite dimensions

The solution for the numerical part of the problem can be found in wh frames.ipynb file.
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1. The analysis operator T : CM → CKL maps a vector x = [x[0] · · ·x[M − 1]]T ∈ CM to the
sequence of inner products

Tx = {〈x,gk,l〉}k=0,...,K−1,l=0,...,L−1.

It is convenient to arrange the inner products {〈x,gk,l〉}k=0,...,K−1,l=0,...,L−1 into a vector
y = [y[0] · · · y[KL− 1]]T ∈ CKL as follows:

y[Lk + l] = 〈x,gk,l〉 =

M−1∑
n=0

x[n]g∗k,l[n], k = 0, . . . ,K − 1, l = 0, . . . , L− 1. (1)

Next define the KL×M matrix T according to

TLk+l,n , g∗k,l[n] = g∗[(n− lT ) mod M ]e−2πikn/K ,

where Ti,j denotes the element in the ith row and jth column of T. Now we can rewrite (1)
as y = Tx, which means that the analysis operator T is represented by the matrix T.

2. Since the analysis operator T is represented by the matrix T, the adjoint operator T† is
represented by the Hermitian transpose of the matrix T, i.e., by TH.

3. Since the frame operator is given by S = T†T, it is represented by the matrix S = THT. The
element in the nth row and mth column of S can be found as follows:

Sn,m =
K−1∑
k=0

L−1∑
l=0

(TLk+l,n)∗TLk+l,m

=

K−1∑
k=0

L−1∑
l=0

g[(n− lT ) mod M ]e2πikn/K g∗[(m− lT ) mod M ]e−2πikm/K

=
L−1∑
l=0

g[(n− lT ) mod M ] g∗[(m− lT ) mod M ]
K−1∑
k=0

e2πik(n−m)/K

=

{
K
∑L−1

l=0 g[(n− lT ) mod M ] g∗[(m− lT ) mod M ], if (n−m)/K ∈ Z
0, if (n−m)/K /∈ Z.

(2)

4. The lower frame bound and the upper frame bound are given by the smallest and the largest
eigenvalue of S, respectively. To check that the lower frame bound is strictly positive, we
therefore need to verify numerically that all eigenvalues of S are strictly positive. Since the
number of elements in the set {gk,l}k=0,...,K−1,l=0,...,L−1 is finite and each vector has bounded
entries, the upper frame bound is finite.

5. For K = M and n,m ∈ {0, . . . ,M − 1} we have that

n−m
K

∈ Z⇔ n = m.

Therefore, S is a diagonal matrix with main diagonal entries

Sn,n = M
M−1∑
l=0

g[(n− l) mod M ] g∗[(n− l) mod M ] = M‖g‖2.

The eigenvalues of S are therefore all equal toM‖g‖2. Since ‖g‖ 6= 0, we see that {gk,l}k=0,...,K−1,l=0,...,L−1
is a tight frame for CM with A = B = M‖g‖2.
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6. Vary the parameters (T,K) and, for each parameter pair, compute the eigenvalues of S. The
frame bounds are given by the smallest and the largest eigenvalue of S. When all eigenvalues
of S are strictly positive you have a frame. If at least one eigenvalue of S is equal to zero,
{gk,l}k=0,...,K−1,l=0,...,L−1 is not a frame for CM .

7. We have shown that {gk,l}k=0,...,K−1,l=0,...,L−1 is a tight frame with frame bound M‖g‖2. This
implies that the frame operator is given by the matrix S = M‖g‖2IM . The canonical dual
frame of {gk,l}k=0,...,K−1,l=0,...,L−1 is then given by {g̃k,l}k=0,...,K−1,l=0,...,L−1 with

g̃k,l = S−1gk,l =
gk,l

M‖g‖2
.

As a consequence, g̃k,l can be written as:

g̃k,l[n] = g̃[(n− l) mod M ]e2iπkn/K , k = 0, . . . ,M − 1, l = 0, . . . , L− 1, n = 0, . . . ,M − 1

where we defined the dual prototype g̃ = S−1g = g
M‖g‖2 .

Problem 7: Frame expansion with noise

We have the following:

E{‖f − fw‖2} = E

‖ 1

A

M∑
j=1

(〈f ,gj〉gj − 〈f ,gj〉gj − wjgj)‖2


= E

‖ 1

A

M∑
j=1

wjgj‖2


= E

 1

A2

M∑
j=1

M∑
k=1

wjw
∗
k 〈gj ,gk〉


=

1

A2

M∑
j=1

M∑
k=1

E{wjw∗k}︸ ︷︷ ︸
σ2δjk

〈gj ,gk〉

=
σ2

A2

M∑
j=1

‖gj‖2

=
σ2NA

A2
=
σ2N

r
.

The MSE is inversely proportional to the redundancy. Therefore, it is an advantage to formulate
algorithms involving frames than bases, which have redundancy 1.

Problem 8: Weyl-Heisenberg frame

As suggested in the problem statement, we start by observing that ̂Tl/2Mkφ = M−l/2Tkφ̂. Indeed,

8



we have the following for all ν ∈ R:

̂Tl/2Mkφ =

∫ ∞
−∞

Tl/2Mkφ(t)e−2πiνtdt

=

∫ ∞
−∞

e2πik(t−l/2)φ(t− l/2)e−2πiνtdt

=

∫ ∞
−∞

e2πikt
′
φ(t′)e−2πiν(t

′+l/2)dt′

= e−2πiνl/2
∫ ∞
−∞

φ(t′)e−2πi(ν−k)t
′
dt′

= e−2πiνl/2φ̂(ν − k)

= M−l/2Tkφ̂.

Using Parseval’s equality, we can then write∑
k∈Z

∑
l∈Z

∣∣〈f,Tl/2MkΨ
〉∣∣2 =

∑
k∈Z

∑
l∈Z

∣∣∣∣〈f, 1√
2
Tl/2Mkφ

〉∣∣∣∣2
=
∑
k∈Z

∑
l∈Z

∣∣∣∣〈f̂ , 1√
2

̂Tl/2Mkφ

〉∣∣∣∣2
=
∑
k∈Z

∑
l∈Z

∣∣∣∣〈f̂ , 1√
2
M−l/2Tkφ̂

〉∣∣∣∣2
=
∑
k∈Z

∑
l∈Z

∣∣∣∣∫ ∞
−∞

f̂(ν)
1√
2
e−2πi

l
2
νTkφ̂(ν)dν

∣∣∣∣2.
Since supp φ̂ ⊂ [−1, 1], we have that supp Tkφ̂ ⊂ [k − 1, k + 1], which gives

∑
k∈Z

∑
l∈Z

∣∣〈f,Tl/2MkΨ
〉∣∣2 =

∑
k∈Z

∑
l∈Z

∣∣∣∣∫ k+1

k−1
f̂(ν)

1√
2
el/2(ν)∗Tkφ̂(ν)dν

∣∣∣∣2,
where el/2(ν) = e2πi

l
2
ν for all ν ∈ [k − 1, k + 1]. We recognize the standard inner product of

L2[k − 1, k + 1]:

∑
k∈Z

∑
l∈Z

∣∣〈f,Tl/2MkΨ
〉∣∣2 =

∑
k∈Z

∑
l∈Z

∣∣∣∣∣
〈
f̂Tkφ̂,

1√
2
el/2

〉
L2[k−1,k+1]

∣∣∣∣∣2.
Since {el/2/

√
2}l∈Z forms an orthonormal basis for L2[k − 1, k + 1] for all k ∈ Z, we can use again

Parseval’s equality to write that∑
k∈Z

∑
l∈Z

∣∣〈f,Tl/2MkΨ
〉∣∣2 =

∑
k∈Z
‖f̂Tkφ̂‖2L2[k−1,k+1]

=
∑
k∈Z

∫ k+1

k−1

∣∣∣f̂(ν)
∣∣∣2∣∣∣φ̂(ν − k)

∣∣∣2dν.
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Since suppTkφ̂ ⊂ [k − 1, k + 1] and
∑

k∈Z
∣∣φ̂(ν − k)

∣∣2 = 1 for all ν ∈ R, it holds that

∑
k∈Z

∑
l∈Z

∣∣〈f,Tl/2MkΨ
〉∣∣2 =

∑
k∈Z

∫ k+1

k−1

∣∣∣f̂(ν)
∣∣∣2∣∣∣φ̂(ν − k)

∣∣∣2dν
=

∫ k+1

k−1

∣∣∣f̂(ν)
∣∣∣2∑
k∈Z

∣∣∣φ̂(ν − k)
∣∣∣2dν (1)

=

∫ k+1

k−1

∣∣∣f̂(ν)
∣∣∣2dν

= ‖f̂‖2 = ‖f‖2. (2)

Note that we can exchange the order of the summation and the integral in (1), since the series∫ k+1
k−1

∣∣f̂(ν)
∣∣2∑

k∈Z
∣∣φ̂(ν − k)

∣∣2dν converges. The equality in (2) shows that {Tl/2MkΨ} forms a
tight frame with frame bound A = 1.

Problem 9: Wavelet frame

Let f ∈ L2(R). Using Parseval’s theorem, we have that∑
j≥−1

∑
k∈Z
|〈f, ψj,k〉|2 =

∑
k∈Z
|〈f, ψ−1,k〉|2 +

∑
j∈N

∑
k∈Z
|〈f, ψj,k〉|2

=
∑
k∈Z

∣∣∣〈f̂ , ψ̂−1,k〉∣∣∣2 +
∑
j∈N

∑
k∈Z

∣∣∣〈f̂ , ψ̂j,k〉∣∣∣2.
By definition of Ψ−1,k and Ψj,k, j ∈ N, k ∈ Z, it holds that for all ν ∈ R

ψ̂−1,k(ν) = φ̂(ν)e−2πiνk/2/
√

2 = φ̂(ν)e−k/2(ν)/
√

2

ψ̂j,k(ν) = 2−j/2−1φ̂(ν)e−2πiνk2
−j/4 = 2−j/2−1ψ̂(2−jν)e−k2−j/4(ν),

where we defined ek(ν) = e2πikν for all ν ∈ R. This gives∑
j≥−1

∑
k∈Z
|〈f, ψj,k〉|2 =

∑
k∈Z

∣∣∣∣〈f̂ , 1√
2
e−k/2φ̂

〉∣∣∣∣2 +
∑
j∈N

∑
k∈Z

∣∣∣〈f̂ , 2−j/2−1e−k2−j/4ψ̂(2−j ·)
〉∣∣∣2

=
∑
k∈Z

∣∣∣∣∫ ∞
−∞

f̂(ν)φ̂(ν)
1√
2
ek/2(ν)dν

∣∣∣∣2 +
∑
j∈N

∑
k∈Z

∣∣∣∣∫ ∞
−∞

f̂(ν)ψ̂(2−jν)2−j/2−1ek2−j/4(ν)dν

∣∣∣∣2
=
∑
k∈Z

∣∣∣∣∫ 1

−1
f̂(ν)φ̂(ν)

1√
2
ek/2(ν)dν

∣∣∣∣2 +
∑
j∈N

∑
k∈Z

∣∣∣∣∣
∫
Qj

f̂(ν)ψ̂(2−jν)2−j/2−1ek2−j/4(ν)dν

∣∣∣∣∣2
=
∑
k∈Z

∣∣∣∣〈f̂ φ̂, 1√
2
ek/2

〉∣∣∣∣2 +
∑
j∈N

∑
k∈Z

∣∣∣∣〈f̂ ψ̂(2−j ·), 2−j/2−1ek2−j/4
〉
L2(Qj)

∣∣∣∣2
since supp φ̂ ⊂ [−1, 1] and ψ̂(2−j ·) ⊂ Qj , [−2j+1,−2j−1] ∪ [2j−1, 2j+1]. We have seen in the
previous problem that {ek/2/

√
2}k∈Z forms an orthonormal basis for L2[−1, 1].

Likewise we have that {2−j/2−1ek2−j/4}k∈Z forms an orthonormal basis for Qj . Thus, we can use
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Parseval’s equality to write that∑
j≥−1

∑
k∈Z
|〈f, ψj,k〉|2 = ‖f̂ φ̂‖2L2[−1,1] +

∑
j∈N
‖f̂ ψ̂(2−j ·)‖2L2(Qj)

=

∫ 1

−1

∣∣∣f̂(ν)
∣∣∣2∣∣∣φ̂(ν)

∣∣∣2dν +
∑
j∈N

∫
Qj

∣∣∣f̂(ν)
∣∣∣2∣∣∣ψ̂(2−jν)

∣∣∣2dν
=

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2∣∣∣φ̂(ν)

∣∣∣2dν +
∑
j∈N

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2∣∣∣ψ̂(2−jν)

∣∣∣2dν,
using again the fact that T φ̂ ⊂ [−1, 1] and T ψ̂(2−j ·) ⊂ Qj . We can exchange the order between

the summation and the integral and use the fact that
∣∣φ̂(ν)

∣∣2 +
∑

j∈N
∣∣φ̂(2−jν)

∣∣2 = 1 for all ν ∈ R.
This yields ∑

j≥−1

∑
k∈Z
|〈f, ψj,k〉|2 =

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2∣∣∣φ̂(ν)

∣∣∣2dν +
∑
j∈N

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2∣∣∣ψ̂(2−jν)

∣∣∣2dν
=

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2 (∣∣∣φ̂(ν)

∣∣∣2 +
∣∣∣ψ̂(2−jν)

∣∣∣2) dν
=

∫ ∞
−∞

∣∣∣f̂(ν)
∣∣∣2dν = ‖f̂‖2 = ‖f‖2,

which shows that {ψj,k}j≥−1,k∈Z forms a tight frame for L2(R) with frame bound 1.
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