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Problem 1: Eigenvalue decomposition

1. Any hermitian matrix T can be written as T = UAU", where U is unitary (UM = U™1)

T(I+T)"! = UAUM (I + UuAUM) !
= UuAUH(UU"TU + AU !
=uAUH (U a+A) U
=UAI+A)'U™

AL
(1+A1)
—U uH.
Ap
(14+Xn)
We see that T(I 4+ T)~! has the same eigenvectors as T and eigenvalues \; = 1%\

2. In general it is not possible to say anything about the eigenvalues of a product of arbitrary
N x N hermitian matrixes with known eigenvalues. To see this consider the two sets of

matrices
wmd={o 5] |p 3]

wm={fs 5] 1}

The matrices B; and By have the same eigenvalues. However, the products

and

1 0

AB; = 6_

and _ i}
3 0

AB; = 0 2

have different eigenvalues.

3. The fact that S and T have the same eigenvectors, implies that there is a unitary matrix U
such that S = UAgU" and T = UA;UM. Therefore,

TS = UA;r UHU A UM
I
= UApAgUM.



We conclude that T'S has the same eigenvectors as T and S but with eigenvalues Arg = Arg.

At this point it is instructive to go back to the counter example in the previous point and
realize that the order of eigenvectors w.r.t. the order of eigenvalues matters.

4. (a) Spectral decomposition for circulant matrices: C = FAFH where
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55
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5“ Z —km
= = Cy B
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Therefore, Cfy, = Apfi, where A\ = \/ﬁf,':c. We see that all circulant matrices have the
same eigenvectors.
Note: The fourth equality follows from

amodn:a—Lan
n

= gHll-m] _ ﬂk((z—m')—L%Jn) — gh(i—m") B—kLl‘,Z”’Jn_

——
=1

(b) Cy = FA1F" and Cy = FALFH. Note that F is unitary since its columns are orthonor-
mal.

C,Cs = FA;A,F"
C,C; = FAoAFM

Since diagonal matrices A; and As commute = C1Cy = C5C;.



Problem 2: Bandpass filter and orthogonal complement

Let
A& {{artkez € P2 a(f) =0 for all f € [-1/2,1/2]\ [f1, f2]}
B£ {{bk}kez €?:b(f) =0forall fe [f17f2]} ;

where a(f) = S50 are 28/ and b(f) = S bre 2 denote the DTFTs of {ak}rez and
{by. }rez, respectively. We need to show that A+ = B.

First we show that A+ C B. Indeed, take {c;}rez € AL. By definition of the orthogonal comple-
ment, {c}rez is orthogonal to every sequence in A, i.e.,

<{Ck}k€Za {ak}kez> =0 for all {ak}kez e A. (1)

Using Parseval’s theorem, we compute the inner product ({cg}rez,{axr}rez) in the frequency do-

main as follows
1/2

(chen {ahez) = 3. auai= [ DTN,
k=—o00 B

where ¢(f) = Z;o:_oo cpe 12mkT By definition of A, it therefore follows that condition can only

be satisfied if ¢(f) = 0 for all f € [f1, f2]. Therefore, by definition of B, {c }rez € B, which implies

A+ c B.

Next, we show that B C A+. Take {c;}rez € B. For every {ay}rez € A, using Parseval’s theorem,

we have
o0 1/2

(ehen (aher) = 3 o= [ LADT( =0,
k=—00 -

where the last equality follows because a(f) and ¢(f) are supported on disjoint intervals. Therefore,

{cx}rez € At, which implies B ¢ At. By A' C B we therefore get A* € B C At and hence

AL =B.

Problem 3: Tight frames

1. Take x = [zg---23_1]" € CM and compute

KM-1 KM-1|M-1 )
Z |<X7gk>|2 _ Z Z xn6—127rkn/(KM) 2
k=0 k=0 |n=0

KM—-1M-1M-1
_ Z Z xnleefiQWkn/(KM)eiZﬂkn’/(KM)
k=0 n=0 n’=0
M—-1M-1 KM—1
= T, Z ¢ it ('=n)
n=0 n’=0 k=0

KM, n=n'
0, n#n

M-1
=Y KMla,|* = KM|Jx|?. (1)
n=0



Since ([1)) holds for all x € C™, {8k }o<k<knm—1 is a frame for CM with upper and lower frame
bound equal to KM, i.e., it is a tight frame with frame bound A = K M.

2. Take z(t) € £2([0,T]) and compute

Z |<$79k>|2: Z / x(t)e_i27rkt/Tdt/ x*(t/)ei%kt//Tdt/

k=—o00 k=—o00
<[ / = ik =) /
= / ()2 (t) Y T atdt
—00 J —00 k——o0

=T St —t—kT)

@ f: T/OO 2(t) 2¥(t + kT)dt

S T (x,z) = T)z|?, (2)

where in (a) we used the sifting property of the o-function and in (b), (c), and (d) we used
that z(t) € £2([0,T]). Since holds for all x(t) € L£2([0,T)), {gr(t)}rez is a frame for

£2([0,T]) with upper and lower frame bound equal to T, i.e., it is a tight frame with frame
bound A =T

Problem 4: Sampling theory I

1. Take {ag}rez € R(T). By definition of A, we have

o0

Aagtrez = Z aghrp (; - k) -

k=—0o0
The result now follows immediately by noting that

oo

Tarthez = Y andn(t)

k=—o0

where gk (t) = Tgk(t) = th(% — k) .



2. Take {by}rez € R(T)*. Then,

. t
A{bitkez = Y brhip <T - k>

k=—o00
0 1/2 R .
= Z bk/ hup(f)e?™WT=R) qf
k=—00 —1/2
/2 . © )
_ / hLP(f)€127th/T Z bk67127rkf df
-1/2 k=—o00
b(f)
V2 .
= [ (e Ty
—-1/2
=0, (1)

where the last equality follows because b(f) is supported on the set [~1/2, —BT] U [BT,1/2]
and hyp(f) is supported on the set [-BT, BT].

3. Take {cx}rez € I2. We can write {ci}rez = {ar}rez + {bx}rez with {artkez € R(T) and
{bp}rez € R(T)*. It was proven in 1. and 2. above that A{ay}rez = T'{ax}rez and
A{bg}rez = 0. Therefore,

Aer}rez = Magtrez + Abr}rez = THag brez
0

Since {ar}trez € R(T) and P is the orthogonal projection operator onto R(T), we have
P{ar}rez = {ak}rez. Similarly, since {bg}rez is in the orthogonal complement of R(T), we
have P{by }rcz = 0. Therefore,

T'P{cr}rez = T' Plar trez +T7T P{bx trez = T {ar }rez-
—— N———
{ak}rez 0

We conclude that A = TTP, as required.

Problem 5: Sampling theory II

The proof is accomplished in three steps.

1. Take {ax}rez € R(T)L. We have,

Q) — t
B{ak}kez (:) Z arhout <T - k)

k=—00

/ ~ .
(:) /1 2 a(f)hout(f)elsz/Tdf

-1/2
- /

< / A arb(p)eEI T / " afarb(pem Ty,
-1/2 BT



where (a) follows by definition of B, (b) follows by the same steps as the solution of item 2
in Problem {4} and in (c) we used that a(f) =0 for f € [-BT, BT|]. Similarly,

Q) — t
M{a } ez @ Z aghnr (T - k‘>

k=—o00

/ ~ .
= / A )T
—1/2

—BT ) / .
< / a(f)arb(f)e™ T df + / " fab( ey,
_ BT
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where (a) follows by definition of M, (b) follows by the same steps as in in solution of item
2 in Problem (4} and in (c¢) we used that a(f) = 0 for f € [-BT,BT]. We conclude that

B{ai}rez = M{ag }rez-

2. Next, take {by}rez € R(T). Then,

> t
B{brtrez = D bkhm(T - k)

k=—o0

2 o .
= [ Wb Tap

~1/2
=0,

where the third equality follows because Z( f) is supported on the set [—BT, BT] and Eout( f)
is supported on the set [-1/2,—-BT] U [BT,1/2].

3. Finally, take {c }rez € 1. We can write {cy }rez = {ar }rez + {bk trez with {ag}rez € R(T)*
and {bgtrez € R(T). It was shown in item 1 above that B{aj }rcz = M{ax }rez and in item
2 above that B{b; }rez = 0 so that

B{ck}rez = B{ak trez + B{bx}rez = M{ak trez. (1)
0

Since {ag}rez is in the orthogonal complement of R(T) and P is the orthogonal projection
operator onto R(T), we have P{ay }rez = 0, or, equivalently, (I;2 —P){a }rez = {ax }rez. Sim-
ilarly, since {bx }rez € R(T), we have P{by }rez = {bx }rez, or, equivalently (Ij2 —P){by trez =
0. Therefore,

M(I,2 — P){Ck}kez =M Iz — P){ak}kez +M (L2 — ]P)){bk}keZ = M{ak}kez~ (2)

g

{ar}rez 0

Comparing and , we can therefore conclude that B = M(I;2 — P), as required.

Problem 6: Weyl-Heisenberg (WH) frame in finite dimensions

The solution for the numerical part of the problem can be found in wh_frames.ipynb file.



. The analysis operator T : CM — CKZ maps a vector x = [2[0]---z[M — 1]]T € CM to the

sequence of inner products

Tx = {(X, 8k1) tk=0,...,K—1,1=0,....L—1-

It is convenient to arrange the inner products {(x,g)}k=0,. K—1,=0,. 1 into a vector
y = [y[0] - - - y[KL — 1]]T € CKL as follows:

ylLk +1] = (x,gx1) }: nlgrin), k=0,...,K—1,1=0,...,L—1. (1)

Next define the KL x M matrix T according to
Trksin 2 gigln] = g°[(n —IT) mod Mle >m/X,

where T; ; denotes the element in the ith row and jth column of T. Now we can rewrite
as y = Tx, which means that the analysis operator T is represented by the matrix T.

. Since the analysis operator T is represented by the matrix T, the adjoint operator TT is
represented by the Hermitian transpose of the matrix T, i.e., by TH.

. Since the frame operator is given by S = TTT, it is represented by the matrix S = THT. The
element in the nth row and mth column of S can be found as follows:

K-1L-1
Snm = Z Z Tritin) Trortim
k=0 1=0
K-1L-1 . |
— Z g[(n _ ZT) mod M]ekan/K g*[(m N ZT) mod M]e—kam/K
k=0 1=0
L1 o1
= g[(n —IT) mod M]g*[(m —IT) mod M] Z o2mik(n—m)
1=0 P
KZ; 0 g[(n— T) mod M| g*[(m —IT) mod M], if (n—m)/K € Z )
0, if (n—m)/K ¢ Z.

. The lower frame bound and the upper frame bound are given by the smallest and the largest
eigenvalue of S, respectively. To check that the lower frame bound is strictly positive, we
therefore need to verify numerically that all eigenvalues of S are strictly positive. Since the
number of elements in the set {gy;}r=0,. . K—1,=0,. 1 is finite and each vector has bounded
entries, the upper frame bound is finite.

. For K = M and n,m € {0,..., M — 1} we have that

n—m
ceZ << n=m.

Therefore, S is a diagonal matrix with main diagonal entries
Sy =M Z gl(n — 1) mod M]g*[(n —1) mod M] = M]||g|>.

The eigenvalues of S are therefore all equal to M||g||?. Since ||g|| # 0, we see that {gk;} k=0, K—11=0.. L1
is a tight frame for CM with A = B = M||g]?.



6. Vary the parameters (7', K) and, for each parameter pair, compute the eigenvalues of S. The
frame bounds are given by the smallest and the largest eigenvalue of S. When all eigenvalues
of S are strictly positive you have a frame. If at least one eigenvalue of S is equal to zero,
{8k} k=0, K—11=0,. -1 is not a frame for cM,

7. We have shown that {gy}r—0,.. K—1=0,. 1 is a tight frame with frame bound M||g||?. This
implies that the frame operator is given by the matrix S = M||g||?I5;. The canonical dual

frame of {gk,}r—o0,....k~1,1=0,...L—1 is then given by {8k }r—o0,...K-1,1=0,..L—1 With

k.l
M||gl?

~ -1
gkl =S gL =
As a consequence, gy ; can be written as:

draln] = gl(n —1) mod M]eA™* /K "k —0,... M—1,1=0,...,L—1,n=0,...,M —1

where we defined the dual prototype § = S™'g = w.
Problem 7: Frame expansion with noise
We have the following:
M
E{|If — £’} = E 15 D (fgj) g — (f.2)) 85 — wig))|?

=1

E{;iwjgjg

1 M M
T2 2w (8 )

Jj=1k=1 5
g 6J‘k
0'2 M
2
=552l
j=1
B 02N A B 02N
A2 T

The MSE is inversely proportional to the redundancy. Therefore, it is an advantage to formulate
algorithms involving frames than bases, which have redundancy 1.

Problem 8: Weyl-Heisenberg frame

As suggested in the problem statement, we start by observing that TZ//Q-M\IICQS =M_, /QT]CQAS. Indeed,



we have the following for all v € R:
Tyl = [ Tysio(te > de
_ /oo (2MR=L/2) gy _ | 19)e=2mivt gy
_ / = ikt () e—2mv+2) gy
—00

_ e—27ril/l/2/ ¢(t,)€_27ri(y_k)tldt’
— e—27ril/l/2qg(y o k)
= M_; 5T

Using Parseval’s equality, we can then write

ZZ [(F, TupaMp 0 [* = ZZ <f, ZLQTZ/sz¢> 2
k€Z lEZ k€Z lEZ
=ZZ<1yﬂm@2
kEZ IEZ
=SS Jgouemd )
S S
=S X[ e b
keZ lez 'Y T

Since supp ¢ C [—1,1], we have that supp T C [k — 1,k + 1], which gives

k+1 A 1 )
DD [(F Ty w)? ZZ/ 1o () Tid(v)dv

keZ leZ keZ leZ f

2

where ¢;/5(v) = e2™37 for all v € [k — 1,k + 1]. We recognize the standard inner product of
L2k — 1,k +1]:

DD KA TeMe)P=3 > 2

keZ leZ keZ leZ

<ka¢7 el/2>
L2[k—1,k+1]

Since {61/2/\@}162 forms an orthonormal basis for L?[k — 1,k + 1] for all k € Z, we can use again
Parseval’s equality to write that

ZZ} f; Tl/2Mk\I’ Z||ka¢HL2k 1,k+1]

kE€Z leZ keZ

>

kEZ

i

u)’z‘é(y—k‘)‘zdu.



Since suppTy¢ C [k — 1,k + 1] and Y okez !(]B(V — k)|> =1 for all v € R, it holds that

P BTLTTRTIEES oy RIS ORI

keZ IeZ keZ

k1, .
-/ Fl 3 fot = o (1)

k+1 .
= [ Jiw]ar
k—1
— IFI2 = 1. @)

Note that we can exchange the order of the summation and the integral in , since the series
k+1 ‘f )P Yz ‘é(v — k)|?dv converges. The equality in shows that {T;,,M ¥} forms a
tlght frame with frame bound A = 1.

Problem 9: Wavelet frame

Let f € L?(R). Using Parseval’s theorem, we have that

SO NP =D )P+ DD )

‘ =[P S ()

By definition of ¥_; ;, and ¥;, j € N, k € Z, it holds that for all v € R

boip(v) = W)e 22 12 = J(w)e_yn(v)/V2
Dip(v) = 279271 ()e 2R A = 9721 (27 e iy s a(v),

where we defined e () = e*™* for all v € R. This gives

SO KF P =>" <f7 1€k/2§£> 1YY ‘<f, 27j/271€7k2*1/41&(27j’)>‘2
j>—1keZ keZ \/i JENEEZ
= Z / f( )(&( )\[ek/Q dV + ZZ / f V)27j/2716k27j/4(1/)dy 2
kez 'V T jEN keZ
1 ~ ~ /\ . .
= /1f(1/)¢( )\[ek/Q v)dv +ZZ 2770)27 P ey g (V) dv |
kez '~ JEN keZ
= ke% <f¢v ek/2>‘ +]§e;”€€% <f1ﬁ (2™ ] , 27 i/2= ekgj/4>L2(Qj)‘2

since supp ¢ C [—1,1] and (279.) C Q; = [-27F, 2771y [2771,27%1]. We have seen in the
previous problem that {ej// V2} ez forms an orthonormal basis for L?[—1,1].

Likewise we have that {Z_j/2_1€k2—j/4}kez forms an orthonormal basis for ¢);. Thus, we can use

10



Parseval’s equality to write that

S Y KA P = 150l + DO IFER T2 g,

J>—1keZ et
: F 7 n ~ .
EA R WA
= [T iwPporfar+ X [ [iw]fie
- jen/—oo

using again the fact that 7 ¢ C [—1,1] and T (277.) C Q;. We can exchange the order between
the summation and the integral and use the fact that |¢(v)|? + > jeN |p(277v)|> =1 forall v € R.
This yields

> Y lrwl = [ oo+ 3 [ |ieie
e jeNY T

j>—1keZ

= [ |iw ) ([80)P + o) av

—00

N / Fw)Pdv = A1 = II£1%,

—00

which shows that {t; };>_1 ez forms a tight frame for L?(R) with frame bound 1.
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