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Problem 1: Gram matrix

Let A € CM*N be the matrix whose kth column is aj. Since the entry in the kth row and in the
Ith column is (ay,a;) = afak, the Gram matrix can be written as G = AHA. Therefore, it holds
that

G = (A"A)" = AR (A = APA =G,
which shows that G is Hermitian. Moreover, for all x € C™, we have

x1Gx = x"TA"Ax = (Ax)"Ax = |Ax|? > 0.

Therefore, G is positive-semidefinite. Since ||-|| is a norm, xHGx = 0 implies that Ax = 0. So, if
A has linearly independent columns, Ax = 0 implies that x = 0, and G is positive-definite.

Problem 2: “[g-norm”

For a vector x € CVV, we have that
[12xlo = [Ix[|o,

which shows that the homogeneity property of a norm is not satisfied. Therefore, ||-||o is not a norm
for CV. Its name and notation come from an abuse of terminology, taking p = 0 in the definition
of the l,-norm ||-||, which is commonly defined for p € [1, o] as
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Problem 3: Fat matrix inversion

1. The equation Ax = y has infinitely many solutions if y is in the column range space of A.
This is guaranteed when rankA = S, i.e., when all rows of A are linearly independent (or
equivalently, S columns of A are linearly independent). The equation Ax =y has no solution
if y is not in the column range space of A. This can only happen when rank A < S, i.e., when
A has linearly dependent rows (or equivalently, less than S linearly independent columns).

2. Solving the equation Ax =y under the constraint that z; = 0 for j ¢ S amounts to solving
the equation Ax =y, where A is the S x S matrix obtained by removing the N — S columns
of A that are indexed by S¢ and where the unknown X is an S-dimensional vector. The
equation Ax =y has exactly one solution if det A #0, i.e., if A has full rank. Therefore, the
equation Ax =y has exactly one solution if the columns {a;};cs indexed by S are linearly
independent.



Problem 4: Compressed sensing

Intuitively, we can write x in terms of its discrete derivative. We can write x = Ux’, where
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is the discrete integration matrix and x' = [a10...0s — @10...0...as — as_10...0]T € RV is an

block1 block2 blocks
s-sparse vector. We can then recover x’ from y = Ax = AUxX’ by solving

minimizeg [|X[|; subject to y = AUx.

Problem 5: PO recovery algorithm

See pzero.ipynb

Problem 6: Coherence in sines and spikes

By definition:
p(D) = mac| (. ).

)

Observe that
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From the lecture we know that if

<3 ) ~Hov

successful recovery via PO or basis pursuit is guaranteed for every s-sparse signal.

Problem 7: Coherence in super-resolution

Let’s compute the absolute value of the inner product between the columns /; and Iy of F,:
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where [ =11 — o and M = 2f. + 1.
Using the formula for the sum of geometric series:
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we find:
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For M = N/2 and large N we can approximate the right hand side of the equation above as
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From the lecture we know that if

o<3 (1 * u(ém)

successful recovery via PO or basis pursuit is guaranteed for every s-sparse signal. Since u(F,) >
the bound we get for s is no better than

1
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This is very pessimistic: for large N and M = N/2 the coherence-based bound only guarantees the
successful recovery of only 2 spikes. It turns out, as we will see in the lecture, a much more optimistic
bound may be obtained for low-frequency Fourier measurements when the signal is nonnegative.

Problem 8: Super-resolution experiment

See superres.ipynb



