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Problem 1: Gram matrix

Let A ∈ CM×N be the matrix whose kth column is ak. Since the entry in the kth row and in the
lth column is 〈ak,al〉 = aHl ak, the Gram matrix can be written as G = AHA. Therefore, it holds
that

GH = (AHA)H = AH(AH)H = AHA = G,

which shows that G is Hermitian. Moreover, for all x ∈ CM , we have

xHGx = xHAHAx = (Ax)HAx = ‖Ax‖2 ≥ 0.

Therefore, G is positive-semidefinite. Since ‖·‖ is a norm, xHGx = 0 implies that Ax = 0. So, if
A has linearly independent columns, Ax = 0 implies that x = 0, and G is positive-definite.

Problem 2: “l0-norm”

For a vector x ∈ CN , we have that
‖2x‖0 = ‖x‖0,

which shows that the homogeneity property of a norm is not satisfied. Therefore, ‖·‖0 is not a norm
for CN . Its name and notation come from an abuse of terminology, taking p = 0 in the definition
of the lp-norm ‖·‖p which is commonly defined for p ∈ [1,∞] as

‖x‖pp =
N∑
k=1

|xk|p.

Problem 3: Fat matrix inversion

1. The equation Ax = y has infinitely many solutions if y is in the column range space of A.
This is guaranteed when rankA = S, i.e., when all rows of A are linearly independent (or
equivalently, S columns of A are linearly independent). The equation Ax = y has no solution
if y is not in the column range space of A. This can only happen when rank A < S, i.e., when
A has linearly dependent rows (or equivalently, less than S linearly independent columns).

2. Solving the equation Ax = y under the constraint that xj = 0 for j /∈ S amounts to solving
the equation Ãx̃ = y, where Ã is the S×S matrix obtained by removing the N −S columns
of A that are indexed by Sc and where the unknown x̃ is an S-dimensional vector. The
equation Ãx̃ = y has exactly one solution if det Ã 6= 0, i.e., if Ã has full rank. Therefore, the
equation Ax = y has exactly one solution if the columns {aj}j∈S indexed by S are linearly
independent.
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Problem 4: Compressed sensing

Intuitively, we can write x in terms of its discrete derivative. We can write x = Ux′, where

U =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0

. . .

1 1 1 . . . 1

 ∈ RN×N

is the discrete integration matrix and x′ = [α10 . . . 0︸ ︷︷ ︸
block1

α2 − α10 . . . 0︸ ︷︷ ︸
block2

. . . αs − αs−10 . . . 0︸ ︷︷ ︸
blocks

]T ∈ RN is an

s-sparse vector. We can then recover x′ from y = Ax = AUx′ by solving

minimizex̂ ‖x̂‖1 subject to y = AUx̂.

Problem 5: P0 recovery algorithm

See pzero.ipynb

Problem 6: Coherence in sines and spikes

By definition:
µ(D) = max

k,l
|〈dk,dl〉|.

Observe that

〈dk,dl〉 =

{
0, k, l ≤M or k, l > M
1√
M

∣∣e2πik(l−M)/M
∣∣ = 1√

M
, k ≤M and l > M.

Therefore, µ(D) = 1√
M

.

From the lecture we know that if

s <
1

2

(
1 +

1

µ(D)

)
=

1

2
(1 +

√
M)

successful recovery via P0 or basis pursuit is guaranteed for every s-sparse signal.

Problem 7: Coherence in super-resolution

Let’s compute the absolute value of the inner product between the columns l1 and l2 of Flo:

|〈fl1 , fl2〉| =
1

N

∣∣∣∣∣∣
fc∑

k=−fc

ei2πk(l1−l2)/N

∣∣∣∣∣∣ =
1

N

∣∣∣∣∣
M−1∑
k=0

ei2πkl/N

∣∣∣∣∣
where l = l1 − l2 and M = 2fc + 1.

Using the formula for the sum of geometric series:

M−1∑
k=0

eikx =
1− eiMx

1− eix
=

sin(Mx/2)

sin(x/2)
eix(M−1)/2
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we find:

|〈fl1 , fl2〉| =
1

N

∣∣∣∣sin(πlM/N)

sin(πl/N)

∣∣∣∣.
Therefore,

µ(Flo) = max
l1,l2
|〈fl1 , fl2〉| = max

l

1

N

∣∣∣∣sin(πlM/N)

sin(πl/N)

∣∣∣∣ ≥ 1

N

∣∣∣∣sin(πM/N)

sin(π/N)

∣∣∣∣.
For M = N/2 and large N we can approximate the right hand side of the equation above as

1

N

∣∣∣∣sin(πM/N)

sin(π/N)

∣∣∣∣ ≈ 1

N

sin(π/2)

π/N
=

1

π
.

From the lecture we know that if

s <
1

2

(
1 +

1

µ(Flo)

)
successful recovery via P0 or basis pursuit is guaranteed for every s-sparse signal. Since µ(Flo) ≥ 1

π
the bound we get for s is no better than

s <
1

2
(1 + π) ≈ 2.

This is very pessimistic: for large N and M = N/2 the coherence-based bound only guarantees the
successful recovery of only 2 spikes. It turns out, as we will see in the lecture, a much more optimistic
bound may be obtained for low-frequency Fourier measurements when the signal is nonnegative.

Problem 8: Super-resolution experiment

See superres.ipynb
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