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Problem 1: Orthogonal matching pursuit

See omp.ipynb

Problem 2: Recovery of approximately sparse signal using l1-minimization

Let x∗ be the solution to (P1) and define h = x∗ − x. By definition, it holds that h ∈ N (D) since
Dh = Dx∗ − Dx = 0. Moreover, we have ‖x∗‖1 ≤ ‖x‖1 because x∗ minimizes ‖x̂‖1 under the
constraint that Dx̂ = Dx. If h 6= 0, we have

0 ≥ ‖x∗‖1 − ‖x‖1 = ‖x + h‖1 − ‖x‖1
= ‖xS + hS‖1 + ‖xSc + hSc‖1 − ‖x‖1
≥ (‖xS‖1 − ‖hS‖1) + (‖hSc‖1 − ‖xSc‖1)− ‖x‖1
= (‖x‖1 − ‖xSc‖1)− ‖hS‖1 + ‖hSc‖1 − ‖xSc‖1 − ‖x‖1
= ‖hSc‖1 − ‖hS‖1 − 2‖xSc‖1
= ‖h‖1 − 2‖hS‖1 − 2‖xSc‖1

= ‖h‖1
(

1− 2
‖hS‖1
‖h‖1

)
− 2‖xSc‖1

≥ ‖h‖1 (1− 2C(D,S))− 2‖xSc‖1.

Note that for every vector v ∈ CN , we can decompose the l1-norm ‖v‖1 into

‖v‖1 =

N∑
k=1

|vk| =
∑
k∈S
|vk|+

∑
k∈Sc
|vk| = ‖vS‖1 + ‖vSc‖1,

which we used several times above.

Under the condition C(D,S) < 1/2, we can conclude that

‖x∗ − x‖1 ≤
2‖x− xS‖1

1− 2C(D,S)
. (1)

In the case of exactly s-sparse signals, we have x = xS . Therefore, the right-hand side in (1) is
equal to zero. This implies x∗ = x. We thus recover the result derived in the lecture.

Problem 3: Restricted isometry property and coherence

1. If A satisfies the RIP of order s, then there exists δ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (2)
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for all x ∈ CN such that
∣∣supp(x)

∣∣ ≤ s. So a fortiori, since s′ ≤ s, (3) holds for all x ∈ CN
such that

∣∣supp(x)
∣∣ ≤ s′ ≤ s, meaning that A satisfies the RIP of order s′ ≤ s.

2. By denoting AS the submatrix consisting of the columns of A indexed by the set S, the
definition of the RIP amounts to∣∣‖ASx‖22 − ‖x‖22∣∣ ≤ δs‖x‖22
for all x ∈ Cs and S ⊂ [1, N ] such that

∣∣S∣∣ ≤ s. The term on the left-hand side can be
equivalently written as

∣∣〈(AH
SAS − Is)x,x

〉∣∣. Taking the supremum over all x ∈ Cs with unit
norm ‖x‖2 = 1 yields the operator norm ‖AH

SAS − Is‖2→2. We can then take the maximum
over all subsets S ⊂ [1, N ] of cardinality at most s to obtain the desired result.

3. The expression derived above shows that all eigenvalues of AH
SAS are contained in the interval

[1− δs, 1 + δs], which bounds the condition number of AH
SAS by 1+δs

1−δs . This means that the
RIP requires that all column submatrices of A of size s are well-conditioned.

4. Since A has normalized column, the matrix AH
SAS−Is has zero on the diagonal. The operator

norm ‖·‖1→1 then yields

‖AH
SAS − Is‖1→1 = max

j∈S

∑
k∈S\{j}

|〈aj ,ak〉| ≤ (s− 1)µ(A).

Using 2., we have then

δs = max
S⊂[1,N ],|S|≤s

‖AH
SAS − Is‖2→2 ≤ max

S⊂[1,N ],|S|≤s
‖AH
SAS − Is‖1→1 ≤ (s− 1)µ(A).

Problem 4: Restricted isometry property: a counterexample

Assume that A satisfies the RIP of order s ≥ 2. Then, there exists δ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (3)

holds for all x ∈ CN such that
∣∣supp(x)

∣∣ ≤ s. In particular, it holds for the vector x ∈ CN defined
such that xl = 1 for all l ∈ [1, s] and xl = 0 for l ∈ [s+ 1, N ]. We have

‖Ax‖22 =

M∑
k=1

∣∣∣∣∣
N∑
l=1

ak,lxl

∣∣∣∣∣2 =

M∑
k=1

∣∣∣∣∣
s∑
l=1

1√
M

∣∣∣∣∣2 = s2 ‖x‖22 = s,

and therefore, (3) implies that (1−δ)s ≤ s2 ≤ (1+δ)s, which, given that δ ∈ (0, 1), gives 0 < s < 2.
This contradicts the fact that s ≥ 2.

Problem 5: Normal vector via PCA

See normal estimation pca.ipynb

Problem 6: Dual norm of the spectral norm is the nuclear norm

2



We seek to prove that

sup
X:σmax(X)≤1

〈X,Z〉 = sup
X:σmax(X)≤1

trace(XTZ) =
∑
i

σi(Z).

First prove that supX:σmax(X)≤1 trace(XTZ) ≥
∑

i σi(Z):

Let Z = UΣVT =
∑

i σiuiv
T
i be the singular value decomposition of A, and define X̄ = UVT =

UIVT. X̄ is unitary, so all of its singular values are 1, hence σmax(X̄) = 1 and

trace(X̄TZ) = trace(VUTUΣVT) = trace(VTVUTUΣ) = trace(Σ) =
∑
i

σi(Z),

where we used that trace(ABC) = trace(CAB). Since the supremum cannot be smaller than this
single instance, we have

sup
X:σmax(X)≤1

trace(XTZ) ≥ trace(X̄TZ) =
∑
i

σi(Z).

Second prove the other direction:

sup
X:σmax(X)≤1

trace(XTZ) = sup
X:σmax(X)≤1

trace(XTUΣVT)

= sup
X:σmax(X)≤1

trace(VTXTUΣ)

= sup
X:σmax(X)≤1

∑
i

σ(Z)i(UXVT)ii

= sup
X:σmax(X)≤1

∑
i

σ(Z)iuiXvT
i

≤ sup
X:σmax(X)≤1

∑
i

σ(Z)iσmax(X)

=
∑
i

σ(Z)i.

The inequality comes from the fact that ‖ui‖ = ‖vi‖ = 1, and

uiXvT
i ≤ sup

‖u‖=‖v‖=1
uXvT = σmax(X).

Problem 7: Subgradient of a norm

Take g ∈ G and let y be arbitrary. Then

‖x‖+ 〈g,y − x〉 = ‖x‖+ 〈g,y〉 − 〈g,x〉 = 〈g,y〉 ≤ ‖g‖∗‖y‖ ≤ ‖y‖,

where in the first inequality we used Holder’s inequality that states
∣∣〈x,y〉∣∣ ≤ ‖x‖‖y‖∗ for any dual

pair of norms. Therefore, g ∈ ∂‖x‖ by definition of subgradient.

Problem 8: Subgradient of a nuclear norm
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Take G = UVT + W ∈ G. We will use the characterization of subgradient from the previous
exercise: if

UVT + W ∈ {F : 〈F,M〉 = ‖M‖∗, ‖F‖ ≤ 1} (4)

then UVT + W ∈ ∂‖M‖∗. Hence, it is sufficient to demonstrate (4). To do so, first observe:〈
M,UVT + W

〉
=
〈
M,UVT

〉
+ 〈M,W〉

= trace(VΣUTUVT) + trace(VΣUTW)︸ ︷︷ ︸
0

= trace(Σ)

= ‖M‖∗.

It remains to show that ‖UVT + W‖ ≤ 1. To show this, take x ∈ Rn. Then

(UVT + W)x = (UVT + W)(PVx + P⊥Vx) = UVTPVx + WP⊥Vx.

Taking norm squared, and using that
〈
UVTPVx,WP⊥Vx

〉
=
〈
VTPVx,UTWP⊥Vx

〉
= 0

‖UVTPVx + WP⊥Vx‖2 = ‖UVTPVx‖2 + ‖WP⊥Vx‖2 ≤ ‖PVx‖2 + ‖P⊥Vx‖2 = ‖x‖2,

which shows that ‖UVT + W‖ ≤ 1.
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