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Problem 1: Orthogonal matching pursuit
See omp.ipynb

Problem 2: Recovery of approximately sparse signal using /;-minimization

Let x* be the solution to (P1) and define h = x* — x. By definition, it holds that h € A/(D) since
Dh = Dx* — Dx = 0. Moreover, we have ||x*||; < ||x||; because x* minimizes ||%X||; under the
constraint that Dx = Dx. If h # 0, we have
0= [x*[lx = lIx[lx = llx + hl[y — x|

= [[xs + hsll1 + [[xse + hselly — [[x[[1

> (Ixslls = [hslle) + (hselln = [lxsell1) = lIx]

= (lIx[ls = lIxsell) = [slly + [[hselly = [[xse s = [Ix]l1

= [[hselli = [[hsly = 2[lxse[ls

= [[hl}y = 2|hsly = 2xse

hs|1
~ s (1-2lpel) o,
> [[hf}; (1 = 2¢(D, ) = 2|[xsell1-

Note that for every vector v € CV, we can decompose the /;-norm ||v||; into

N

Ivle = loel =D Joel + > el = [[vsll + [[vsels,

k=1 keS keSe

which we used several times above.

Under the condition C'(D,S) < 1/2, we can conclude that

* 2ljx — x5l
— x|y < =2l
X =l < T 5ep M

In the case of exactly s-sparse signals, we have x = xs. Therefore, the right-hand side in (1)) is
equal to zero. This implies x* = x. We thus recover the result derived in the lecture.

Problem 3: Restricted isometry property and coherence

1. If A satisfies the RIP of order s, then there exists d € (0, 1) such that
(1= 0)lIxlI3 < [[Ax[|3 < (1 +8)l|x][3 (2)



for all x € CV such that ‘supp(x)! < s. So a fortiori, since s’ < s, holds for all x € CV
such that ‘Supp(x)‘ < s’ < s, meaning that A satisfies the RIP of order s’ < s.

2. By denoting As the submatrix consisting of the columns of A indexed by the set S, the
definition of the RIP amounts to

[[[Asx]3 — [Ix[I3] < o113

for all x € C* and S C [1, N] such that |S| < s. The term on the left-hand side can be
equivalently written as ‘((AEAS —I)x, x>’ Taking the supremum over all x € C* with unit
norm ||x/|2 = 1 yields the operator norm |[AdAs — I;|jo,2. We can then take the maximum
over all subsets S C [1, N] of cardinality at most s to obtain the desired result.

3. The expression derived above shows that all eigenvalues of A sA are contained in the interval
[1— 05,1+ 0], 1+6 . This means that the
RIP requires that all column submatrices of A of size s are well- condltioned.

4. Since A has normalized column, the matrix AEAS —I; has zero on the diagonal. The operator
norm ||-||1—1 then yields

|ARAs — SHHl_max D> layap)] < (s — Du(A).

keS\{j}
Using 2., we have then
0 = ARAs -1, < AlAs — 1, < (s—1)u(A).
sqf}?v?,’fs‘gs” sAs —Ll2m2 < sc[1I,rleé}l,}|{$\gs” sAs —ILifis1 < (s —1u(A)

Problem 4: Restricted isometry property: a counterexample

Assume that A satisfies the RIP of order s > 2. Then, there exists § € (0,1) such that
(1= 0)lIxlI3 < |Ax[|3 < (1+ 8)||x]3 3)

holds for all x € C" such that |supp(x)} < s. In particular, it holds for the vector x € C" defined
such that z; =1 for all [ € [1,s] and 2; =0 for [ € [s + 1, N]. We have

M | N
|Ax|3 = Z Zak,m 2= Z

k=111l=1 k=1

=5 |x|3=s

=1

and therefore, (3)) implies that (1—9)s < s? < (1+6)s, which, given that § € (0,1), gives 0 < s < 2.
This contradicts the fact that s > 2.

Problem 5: Normal vector via PCA

See normal_estimation_pca.ipynb

Problem 6: Dwual norm of the spectral norm is the nuclear norm



We seek to prove that

sup (X,Z) = sup  trace(X'Z) = Z 0i(Z).
X:Umax(x)gl X:Umax(x)gl 3

First prove that supx.,, . (x)<1 trace(XTZ) > 3. 04(Z):
Let Z inZVT =3, U,-uiv;r be the singular value decomposition of A, and define X =UV' =
UIV'. X is unitary, so all of its singular values are 1, hence opyax(X) = 1 and

trace(XTZ) = trace(VUTUEVT) = trace(V VU'UL) = trace(X) = Z 0i(Z),

where we used that trace(ABC) = trace(CAB). Since the supremum cannot be smaller than this
single instance, we have

sup  trace(XTZ) > trace(XTZ) = Z 0i(Z).
X50’max(x)§1 7

Second prove the other direction:

sup  trace(X'Z) = sup  trace(XTUZVT)
X:omax(X)<1 X:iomax(X)<1

= sup  trace(VIXTUX)
X:omax(X)<1

= sup o(Z);(UXVT);
X:omax(X)<1 ; ) (

= sup o(Z)juXv]
X:omax(X)<1 z@: o ‘

< sup 0(Z);0max(X)
X:iomax(X)<1 Z

= Za(z%.

The inequality comes from the fact that ||u;|| = ||vs|| = 1, and

7

u,-XviT < sup uXv'= Omax(X).
lul|=[vil=1

Problem 7: Subgradient of a norm

Take g € G and let y be arbitrary. Then

x| + (g, y —x) = [|x]| + (g, y) — (&%) = (&) < lglllyll <yl

where in the first inequality we used Holder’s inequality that states |(x, y>} < ||x]|||y ]|« for any dual
pair of norms. Therefore, g € J||x|| by definition of subgradient.

Problem 8: Subgradient of a nuclear norm



Take G = UVT + W € G. We will use the characterization of subgradient from the previous
exercise: if

UVT +W e {F: (F,M) = |[M|., ||F|| <1} (4)
then UVT + W € 9||M||.. Hence, it is sufficient to demonstrate (4). To do so, first observe:

<M, uvT ¢ W> - <M UVT> + (M, W)

= trace(VZUTUV') + trace(VEUTW)
0

= trace(X)
= [[M]l.

It remains to show that [[UVT 4+ W| < 1. To show this, take x € R™. Then
(UVT + W)x = (UVT + W)(Pyx + Pyx) = UV Pyx + WPx.
Taking norm squared, and using that <UVT77VX, WP%,X> = <VT73vx, UTWP\J}X> =0
JUVTPyx + WPEx|2 = [[UVTPyx|2 + [WPEx|2 < [Py + [Px]? = x|

which shows that |[UVT + W| < 1.



