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Problem 1: Orthogonal matching pursuit
This is a computer exercise.

Let A = [aj,...,ay] € RMN be a measurement matrix, with columns normalized as ||a;|| = 1, and
x € RV an s-sparse vector, i.e., x has at most s nonzero entries. Define y = Ax € RM.

Implement, preferably in Python, the orthogonal matching pursuit (OMP) algorithm, which allows
to recover the vector x from the measurement vector y, knowing the measurement matrix A and
the sparsity level s only.

For concreteness, take N = 512 and M = 128. Generate a random sparse vector x € RY with a
sparsity level s = 20. Generate a random measurement matrix A € RM*¥ with entries identically
and independently distributed according to a Gaussian distribution of zero mean and variance 1/M.
Renormalize the columns of A to have [2-norm equal to one. Compute y = Ax and reconstruct x
from A and y using OMP algorithm. Repeat the procedure with other values of s.

Recall: The key to OMP is to determine which columns of A participate in the measurement
vector y. The idea behind this is to pick columns of A in a greedy fashion. At each iteration,
we choose the column of A which is most correlated with the residual, i.e., the remaining part
of y which has not yet been approximated. This contribution is then subtracted from y and the
algorithm iterates on the residual.

Problem 2: Recovery of approximately sparse signal using /;-minimization

Let D € CE*N be a matrix (K < N). For an index set A C [1, N], define the quantity

h
C(D,A) = max Il = max ZIC%M’
heN(D), h£0 [[hl[1  heN (D), b0 SN |p,

where hy is the vector constructed from h by setting to zero all but the entries indexed by A. Let
x € CV and consider the l1-minimization problem (P1):

minimizeg o~ subject to Dx = Dx.

In the lecture, we have seen that if x is s-sparse with support S = supp(x) = {k € [1, N] : z # 0},
|S’ < s, and if C'(D,S) < 1/2, then x is the unique solution to (P1).

Now, assume that x is approrimately sparse, meaning that many of the entries of x are close to
zero. Show that if C(D,S) < 1/2, the solution x* to (P1) satisfies
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where S denotes the set containing the indices of the s largest (in magnitude) components of x, the
vector xs thus representing the best s-sparse approximation to x. Do you recover the condition
derived in the lecture for the case of exactly sparse signals?

Problem 3: Restricted isometry property and coherence

Let A € CM*N be a matrix having normalized columns, i.e., each column a;, I € [1, N], satisfies
lai||]2 = 1. For s € [1, N|, we say that A satisfies the restricted isometry property (RIP) of order s
if there exists 0 € (0,1) such that

(1= 0)lxl3 < A% < (1 + )=

for all x € CV such that |supp(x)| < s and we define d5(A) to be the smallest such 4.

1. Show that if A satisfies the RIP of order s, then it also satisfies the RIP or order s’ < s.

2. Show that
5s(A) =  max  [|ARAs — L2,
s(A) = o ey [AsAs = L2
where Ags denotes the matrix consisting of the columns of A indexed by the set S C [1, V]
and Al denotes the conjugate transpose of As. Recall: The matrix norm |-||2—2 is defined
as

A
A= sup IRl
xeCN x#£0 ”X||2

for A € CN*N,

3. What does d5(A) say about the eigenvalues of the matrix AZA s, where S is a subset of [1, N]
of size s? Find an upper bound for the condition number of AEAS expressed in terms of
Js(A).

4. Prove that
0s(A) < p(A)(s—1)

where

A =
pia) = max a2l

is the coherence of the matrix A.

Problem 4: Restricted isometry property: a counterexample

Let A € CM*N he the matrix with constant elements

1
Akl = —F— k € [1,M], le [1,N].

\/M’

Show that A does not satisfy the RIP of order s > 2.

Problem 5: Normal vector via PCA

This is a computer exercise. The goal of the exercise is to use PCA to estimate the normal vector
to a 2D curve and a 3D surface.



1. In the file circle.txt your are given a list of 2D points that are sampled from a 1D curve:
an arc of a circle.

e Read the data from circle. txt and visualize the points using the normal_estimation_pca.ipynb
notebook.

e Explain how you can use PCA to estimate the tangent line to the curve and the normal
vector to the curve. Hint: The tangent direction is the direction in which the variance
of the data is the largest; the normal direction is the direction in which the variance of
the data is the smallest.

e Implement your idea, visualize the normal vector and the tangent line.

2. In the file sphere.txt your are given a list of 3D points that are sampled from a 2D manifold:
a sector of a sphere.

e Read the data from sphere. txt and visualize the points using the normal_estimation_pca.ipynb
notebook.

e Explain how you can use PCA to estimate the tangent plane to the manifold and the
normal vector to the manifold. Hint: The normal direction is the direction in which the
variance of the data is the smallest.

e Implement your idea, visualize the normal vector.

Problem 6: Dual norm of the spectral norm is the nuclear norm

Consider Z € R™*™. The spectral norm is defined

1] = max 7;(X).

The nuclear norm is defined as

Iz = 3" o).

Let ||-|| be a norm. The associated dual norm, is defined as ||Z||gua; = sup{(Z,X) : || X|| < 1}.
The inner product between two matrices is given by (X, Z) = trace(X'Z).

Show that the nuclear norm is the dual norm of the spectral norm with respect to this inner product.

Problem 7: Subgradient of a norm

A vector g € R" is a subgradient of f: R" — R at x if for all z, f(z) > f(x) + (g,z — x). The set
of all subgradients is called the subdifferential, denoted 0f(x).

The subdifferential of a norm ||x|| = /(x,x) in a inner product space can be characterized as
follows:

Olxl = {g: (&x) = x|, lgll- <1}
g

where ||-||, is the dual norm of ||-||.

Show one inclusion in this statement: if g € G, then g € 9||x]|.



Problem 8: Subgradient of a nuclear norm

Let M = UXVT denote the SVD of M. Then, the subdifferential of M is given by

OIM|. ={UV' + W : PyW =0, WPy =0, [W| < 1}.

g
Here Py =), w;u] is the orthogonal projector onto the columns of U = [uy, ..., u,] and similarly
Py =Y, v;v] is the orthogonal projector onto the columns of V = [vy,...,v,].

Prove one inclusion of this statement: if G € G, then G € 9||M||..



