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Problem 1: Orthogonal matching pursuit

This is a computer exercise.

Let A = [a1, . . . ,aN ] ∈ RM,N be a measurement matrix, with columns normalized as ‖ai‖ = 1, and
x ∈ RN an s-sparse vector, i.e., x has at most s nonzero entries. Define y = Ax ∈ RM .

Implement, preferably in Python, the orthogonal matching pursuit (OMP) algorithm, which allows
to recover the vector x from the measurement vector y, knowing the measurement matrix A and
the sparsity level s only.

For concreteness, take N = 512 and M = 128. Generate a random sparse vector x ∈ RN with a
sparsity level s = 20. Generate a random measurement matrix A ∈ RM×N with entries identically
and independently distributed according to a Gaussian distribution of zero mean and variance 1/M .
Renormalize the columns of A to have l2-norm equal to one. Compute y = Ax and reconstruct x
from A and y using OMP algorithm. Repeat the procedure with other values of s.

Recall: The key to OMP is to determine which columns of A participate in the measurement
vector y. The idea behind this is to pick columns of A in a greedy fashion. At each iteration,
we choose the column of A which is most correlated with the residual, i.e., the remaining part
of y which has not yet been approximated. This contribution is then subtracted from y and the
algorithm iterates on the residual.

Problem 2: Recovery of approximately sparse signal using l1-minimization

Let D ∈ CK×N be a matrix (K < N). For an index set Λ ⊂ [1, N ], define the quantity

C(D,Λ) = max
h∈N (D), h6=0

‖hΛ‖1
‖h‖1

= max
h∈N (D), h 6=0

∑
k∈Λ

∣∣hk∣∣∑N
k=1

∣∣hk∣∣ ,
where hΛ is the vector constructed from h by setting to zero all but the entries indexed by Λ. Let
x ∈ CN and consider the l1-minimization problem (P1):

minimizex̂∈CN subject to Dx̂ = Dx.

In the lecture, we have seen that if x is s-sparse with support S = supp(x) = {k ∈ [1, N ] : xk 6= 0},∣∣S∣∣ ≤ s, and if C(D,S) < 1/2, then x is the unique solution to (P1).

Now, assume that x is approximately sparse, meaning that many of the entries of x are close to
zero. Show that if C(D,S) < 1/2, the solution x∗ to (P1) satisfies

‖x∗ − x‖1 ≤
2‖x− xS‖

1− 2C(D,S)
,
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where S denotes the set containing the indices of the s largest (in magnitude) components of x, the
vector xS thus representing the best s-sparse approximation to x. Do you recover the condition
derived in the lecture for the case of exactly sparse signals?

Problem 3: Restricted isometry property and coherence

Let A ∈ CM×N be a matrix having normalized columns, i.e., each column al, l ∈ [1, N ], satisfies
‖al‖2 = 1. For s ∈ [1, N ], we say that A satisfies the restricted isometry property (RIP) of order s
if there exists δ ∈ (0, 1) such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for all x ∈ CN such that

∣∣supp(x)
∣∣ ≤ s and we define δs(A) to be the smallest such δ.

1. Show that if A satisfies the RIP of order s, then it also satisfies the RIP or order s′ ≤ s.

2. Show that
δs(A) = max

S⊂[1,N ],|S|≤s
‖AH
SAS − Is‖2→2,

where AS denotes the matrix consisting of the columns of A indexed by the set S ⊂ [1, N ]
and AH

S denotes the conjugate transpose of AS . Recall: The matrix norm ‖·‖2→2 is defined
as

‖A‖2→2 = sup
x∈CN ,x 6=0

‖Ax‖2
‖x‖2

for A ∈ CN×N .

3. What does δs(A) say about the eigenvalues of the matrix AH
SAS , where S is a subset of [1, N ]

of size s? Find an upper bound for the condition number of AH
SAS expressed in terms of

δs(A).

4. Prove that
δs(A) ≤ µ(A)(s− 1)

where
µ(A) = max

k,l∈[1,N ],k 6=l
|〈ak,al〉|

is the coherence of the matrix A.

Problem 4: Restricted isometry property: a counterexample

Let A ∈ CM×N be the matrix with constant elements

ak,l =
1√
M
,k ∈ [1,M ], l ∈ [1, N ].

Show that A does not satisfy the RIP of order s ≥ 2.

Problem 5: Normal vector via PCA

This is a computer exercise. The goal of the exercise is to use PCA to estimate the normal vector
to a 2D curve and a 3D surface.
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1. In the file circle.txt your are given a list of 2D points that are sampled from a 1D curve:
an arc of a circle.

• Read the data from circle.txt and visualize the points using the normal estimation pca.ipynb

notebook.

• Explain how you can use PCA to estimate the tangent line to the curve and the normal
vector to the curve. Hint: The tangent direction is the direction in which the variance
of the data is the largest; the normal direction is the direction in which the variance of
the data is the smallest.

• Implement your idea, visualize the normal vector and the tangent line.

2. In the file sphere.txt your are given a list of 3D points that are sampled from a 2D manifold:
a sector of a sphere.

• Read the data from sphere.txt and visualize the points using the normal estimation pca.ipynb

notebook.

• Explain how you can use PCA to estimate the tangent plane to the manifold and the
normal vector to the manifold. Hint: The normal direction is the direction in which the
variance of the data is the smallest.

• Implement your idea, visualize the normal vector.

Problem 6: Dual norm of the spectral norm is the nuclear norm

Consider Z ∈ Rn×n. The spectral norm is defined

‖Z‖ = max
i
σi(X).

The nuclear norm is defined as
‖Z‖∗ =

∑
i

σi(X).

Let ‖·‖ be a norm. The associated dual norm, is defined as ‖Z‖dual = sup{〈Z,X〉 : ‖X‖ ≤ 1}.

The inner product between two matrices is given by 〈X,Z〉 = trace(XTZ).

Show that the nuclear norm is the dual norm of the spectral norm with respect to this inner product.

Problem 7: Subgradient of a norm

A vector g ∈ Rn is a subgradient of f : Rn → R at x if for all z, f(z) ≥ f(x) + 〈g, z− x〉. The set
of all subgradients is called the subdifferential, denoted ∂f(x).

The subdifferential of a norm ‖x‖ =
√
〈x,x〉 in a inner product space can be characterized as

follows:
∂‖x‖ = {g : 〈g,x〉 = ‖x‖, ‖g‖∗ ≤ 1}︸ ︷︷ ︸

G

where ‖·‖∗ is the dual norm of ‖·‖.

Show one inclusion in this statement: if g ∈ G, then g ∈ ∂‖x‖.
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Problem 8: Subgradient of a nuclear norm

Let M = UΣVT denote the SVD of M. Then, the subdifferential of M is given by

∂‖M‖∗ = {UVT + W : PUW = 0,WPV = 0, ‖W‖ ≤ 1}︸ ︷︷ ︸
G

.

Here PU =
∑

i uiu
T
i is the orthogonal projector onto the columns of U = [u1, . . . ,un] and similarly

PV =
∑

i viv
T
i is the orthogonal projector onto the columns of V = [v1, . . . ,vn].

Prove one inclusion of this statement: if G ∈ G, then G ∈ ∂‖M‖∗.
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