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“Big data” world

Problem: Estimate a high-dimensional object
from (relatively) few corrupted data points.

Assumption: The object is simple: low-dimensional
structure.

signal processing statistics machine learning
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Underdetermined linear system

— Few linear measurements about a
vl = A high-dimensional object

How can we possibly recover the
object?

The object has low-dimensional
representation (sparsity)

Many problems are naturally of this form.

Even more problems can be forced into this form!
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Huge range of “big data” applications
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Beautiful mathematical core!

super-resolution microscopy radar imaging
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Basic theory
of sparse signal recovery

E. Candes

D. Donoho

J. Romberg
T. Tao
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Prototypical model

_ A

Assumptions:
(1) y is M dimenstional

(2) Sparsity: x has at most .S nonzero entries (S < M)
(3) Properties of A: A;; ~ N(0,1)
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If we knew where nonzeros are ...

iF L

The search for nonzeros is combinatorial in nature!
Recovery by convex programming (relaxation):
minimize Z |z;|  subjectto y = Ax
i

~——

I1-norm ||x||1

Min norm problem is a convex program and computationally tractable
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Why does ¢; work?
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Why ¢; may not always work
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minimize ||x||; such that y = Ax

x* solution iff there exists

v L null(A) and v € C? & v € 9||x"||
null(A)
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Construction of dual certificate

dual
certificate

v € row(A) and {

+1

sgn(x*)

v = sgn(s}) o} #0
lvi] < 1 zr=0

Least-squares solution to vg = sgn(x) :



Construction of dual certificate

dual

v =sgn(zf) xf #0
certificate € row(A) and {

lvi| <1 zf=0

7

Least-squares solution to vg = sgn(x) :
off-support

A =

Asj A.Sc

support

-1

] 2] o (15 o
4

*
Vge AS(:

. sgn(x”)



minimize ||x[[; subject to y = Ax




Sparse recovery guarantee

minimize ||x||; subject to y = Ax

Assume:
X is arbitrary N-dimensional S-sparse vector

data vector y is M-dimensional with
M > Slog(N)

Aij ~N(0,1)
Then, with high probability, |1 solution is exact!

The log is needed to bound deviations of vge around Evge = 0.
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Abbe's diffraction limit for microscopy
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Nobel Prize in Chemistry 2014

conventional microscopy single-molecule microscopy
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Nobel Prize in Chemistry 2014

conventional microscopy single-molecule microscopy

To make imaging faster, need a powerfull algorithm for sparse signal
recovery problem!
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Mathematical model

Object Detector

Mﬂ
0 ] 0 !
w(t) = 3wt — t,) () = (fiow *2)(1)

= stflow(t - ts)
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Mathematical model

Object Detector A= 1/f,
0 1 0 1
o(t) =Y w6(t —t,) s(t) = (fiowx)(t)
’ = Zl'sflow(t_ts)
x = [zo- - xn_1]" y = Ax
X is sparse A ... 2f. x N low-frequency DFT

Ay = e 2N (] < ],
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Columns of A are highly correlated

Solve:
minimize ||x||; subject to y = Ax

Question:
When does |1 work?
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Columns of A are highly correlated

Solve:

minimize ||x||; subject to y = Ax

Question:
When does |1 work?

First observation:

A =Ja,...ay|] 2f.x N

Agt ... Gaussian: Akt ..

(aj,a141) =~ \/%f

] ei27rkt’ ‘]ﬂ‘ < fc
(a,a41) =~ 1
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The dual polynomial for super-resolution
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The dual polynomial for super-resolution

Ay = 671'27rkt/N7 |k| <f = U(t) _ Z @meiZﬂ'mt

1

E. Candés and C. Fernandez-Granda '14

L1 works if spikes are further than 2.

fe
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The dual polynomial for super-resolution

fe
Ay = 671'27rkt/N7 |k| <f = U(t) _ Z @m€i27rmt

1

If spikes are closer than A, = L1 breaks
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The dual polynomial for super-resolution

fe
Ay = 671'27rkt/N7 |l€| <f = U(t) _ Z @meiZﬂ'mt

1

Bernstein theorem:
Consider: v(t) = Zi‘;_fc e ™2™ with |u(t)| < 1 for all ¢
Then: |v/(t)| < 2f. for all .
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The dual polynomial for super-resolution

fe
Ay = 671'27rkt/N7 |k| <f = U(t) _ Z @meiZﬂ'mt
m=—fc

1

<A

Donoho '92:
x > 0 = L1 works if the number of spikes is less than f. + 1
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Super-resolution in the presence of noise

Model:
S:flow*X_FZa ||Z||1§6

Solve:
minimize ||s — flow *X|[1 subjectto x>0

Theorem: [V. Morgenshtern and E. Candes, 2015]

Assume x > 0, x is r-regular. Then,

a N 20
| —x||1 < ¢ (2_fc) .
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Super-resolution in the presence of noise

Model:
S:flow*X_FZa ||Z||1§6

Solve:
minimize ||s — flow *X|[1 subjectto x>0

Theorem: [V. Morgenshtern and E. Candes, 2015]

Assume x > 0, x is r-regular. Then,

a N 20
| —x||1 < ¢ (2_fc) .

Key novelty: a set of new tools in Fourier analysis

1 ®:

20
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Reconstruction of 3D signals from 2D data

Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved
TFOCS first order solver
millions of variables
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Radar imaging
Recap:
m Dual certificate is a tool to analyse success of I1.
m Structure of A determines when certificate exists/does not exist.

m When Ay, are i.i.d. Gaussian, dual certificate is random. It exists
if there are sufficiently many measurements.

m In the super-resolution problem, the certificate is deterministic
low frequency trigonometric polynomial. It exists if the spikes
are sufficiently separated.
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Recap:
m Dual certificate is a tool to analyse success of I1.

m Structure of A determines when certificate exists/does not exist.

m When Ay, are i.i.d. Gaussian, dual certificate is random. It exists
if there are sufficiently many measurements.

m In the super-resolution problem, the certificate is deterministic
low frequency trigonometric polynomial. It exists if the spikes
are sufficiently separated.

We will see: in radar, the certificate is random and it approximates
a low frequency trigonometric polynomial.
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Mathematical model
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Mathematical model

oy )

S
y(t) = sz(ﬂsfl/sf)(t)

s=1

S
= Z zof(t — 7g)e 2t
s=1

Goal: recover (zg, Ts, Vs)



Time and bandwidth limitations

In practice:
m f(t) is bandlimited to B Hz

m y(t) is observed over T sec

® = y(t) is BT-dimensional
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Time and bandwidth limitations

In practice:
m f(t) is bandlimited to B Hz

m y(t) is observed over T sec

® = y(t) is BT-dimensional

Goal: estimate 7 and v with precision higher than 1/B and 1/T

y(t) =0 wof(t— ) (super-resolution)
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Blurring of time and frequency shifts

input output

h(r,v) = Z bsd(T — 75)0(v —vs)  y(t) = // h(r,v)f(t—T)e*™tdrdy

band and time-limitation

sinc(7B) sinc(vT') * h(T,v)
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Main result

Notation:
m y, f contain samples of y(t), f(t) at the rate 1/B

m Columns of A are 7;F,f (indexed by 7 and v):

A = (R T,x|}BT

>

> (BT)?

m Random probing signal: f; i.i.d. N'(0,1)

B X contains xs at location indexed by 7 and v

Solve:
minimize ||x|[; subjectto y = Ax

26
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Main result

Solve:
minimize ||x||; subjectto y = Ax

Theorem: [Heckel, Morgenshtern, Soltanolkotabi '15]

Assume:
) )
|7s — 7| > B o lvs — vp| > T for all s # r

and
S < BTlog™3 (BT).

Then: with high probability, I1 minimization recovers x exactly.
Hence, (7s, Vs, x5) are recovered perfectly.



Key novelty: dual polynomial for radar

Recall:

FT-x

> (BT)?

}BT

Need:

o(r,v) = [F,Tx" v
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Key novelty: dual polynomial for radar

Recall: Need:

A= |RTx|}BT o(r,v) = [FTex]" v

> (BT)?

Ingredient: dual certificate for super-resolution (with separation)
[Candes and Fernandez-Granda '14]

v(t) =Y, csg(t — ts) + corrections
Low pass and concentrated kernel: g(t) = gi G2kt

=f. 9k
1

\/
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Key novelty: dual polynomial for radar

Need: v(r,v) = [F,T,x]" v

Ingredient:
v(t) = Zs csg(t — ts) + corrections
low pass and concentrated kernel: ¢(t) = gc:_fc gkei%rkt
1 A d
L9t —ts)
1 ° °
>2),
For radar:

v(T,v) =, €sGr, v, (T, V) + corrections

Grov. (T, V) “resembles” g(- —75) x g(- — vs)
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Kernel:

Grs,vs (r,v) = []:VTTX]H v
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Key novelty: construction of g, , (-, ")

Kernel:
Grow(T,v) = [FTx]" %
We can write:

(]:1,7;-X)H = [ L ei2m(rrva) | ] rGH

F is 2D DFT matrix G = |FaT.x ¢BT
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Key novelty: construction of g, , (-, ")

Kernel:
g7'57Vs (T7 V) = [‘FV,];X}H {,
We can write:

(]:1,7;-X)H = [ L ei2m(rrva) | ] rGH

F is 2D DFT matrix G = |FaT.x ¢BT

Choose coefficients:

v = GFH [ . .grgqe—i%r(ﬂ“wq) . .]T
Observe: E [FGHGF"] =FE [GH'G]F" =1
Therefore: E[g,. o(7,0)] = Sp_ 7 ue>™ 07 = g(7 — 7))
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Random kernel approximates deterministic kernel
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Random kernel approximates deterministic kernel

Observe: E [FGHGF" =1]

Therefore: E [g;, o(7,0)] = Z;}szT g™ =) = g(1 — 7))

Vs

Vge

(=10

EVSC =0

bgn

x7)
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Random kernel approximates deterministic kernel

Observe: E [FGHGF" =1]
Therefore: E [g;, o(7,0)] = Z;}szT g™ =) = g(1 — 7))

I FEREED

= *
Vse ASC

bgn x*)

EVSC =0

Now we can use:

v(T,v) = >, CsGr, v, (T, V) + corrections
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Mathematics of information

super-resolution microscopy radar imaging
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Mathematics of information

PN
e,

Desfination 2

‘®

Destination 1

large wireless
networks

OFDM Symbol

/
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COECOHECOC HEC OE >+
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p S N B I I S g
EDEDEDEDEC HED
O I I I

EDEDEDECDE DE D
YO IO I IR
F-EDEDEDEDC OCD
p S S B S S g
€D EDERERE e
L I LA 7
F-EDEDEDEC DE DE D
OO O
-T 0 2r

channel uncertainty

communication
under

systems
with

multiple receive antennas
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Related open problems

Aﬂ:liu{:ons:

i wu\ai—\a vj murom-l(ml{s

[ Pharse redrieval from Fourier Acta:

Yu = AT
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